Temperature‐Dependent Quantum Pair Potentials and Ionization in Helium‐Like Plasmas

Diffraction corrected effective and Coulomb electron‐ion interactions are worked out for helium‐like ions in plasmas of warm dense matter concern, through explicit wave functions derived within a suitable quantum defect frame work. Very significant departures from the corresponding and usual hydrogen‐like expressions are reported. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  D. Gericke,et al.  Analysis of Thomson scattering from nonequilibrium plasmas. , 2011, Physical review letters.

[2]  M. Gabdullin,et al.  Effective potentials for ion-ion and charge-atom interactions of dense semiclassical plasma , 2010 .

[3]  D. Gericke,et al.  Structural properties of warm dense matter , 2010 .

[4]  S. Wessel,et al.  Time evolution of correlations in strongly interacting fermions after a quantum quench , 2008, 0812.0561.

[5]  H. Reinholz Dielectric and optical properties of dense plasmas , 2005 .

[6]  W. Ebeling,et al.  Temperature-dependent quantum pair potentials and their application to dense partially ionized hydrogen plasmas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  M. Gombert Temperature‐dependent pseudopotential between two pointlike electrical charges , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  W. Ebeling,et al.  Effective Potentials, Energies, and Pair‐distribution Functions of Plasmas by Monte‐Carlo Simulations , 2001 .

[9]  T. Aoki,et al.  Energy loss of 6 MeV/u iron ions in partially ionized helium plasma , 2000, 2000 13th International Conference on High-Power Particle Beams.

[10]  M. Gombert,et al.  Theoretical derivation of bound and continuum states of two-electron ions with model potential , 1997 .

[11]  Drake,et al.  Quantum defects and the 1/n dependence of Rydberg energies: Second-order polarization effects. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[12]  Furukawa,et al.  Reduction in bremsstrahlung emission from hot, dense binary-ionic-mixture plasmas. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[13]  E. L. Pollock Properties and computation of the Coulomb pair density matrix , 1988 .

[14]  C. Deutsch,et al.  Classical modelization of symmetry effects in the dense high-temperature electron gas , 1978 .

[15]  C. Deutsch Nodal expansion in a real matter plasma , 1977 .

[16]  C. Deutsch Polarization Model for the Excited States of Neutral Helium , 1970 .

[17]  A. Green,et al.  Analytic Independent-Particle Model for Atoms , 1969 .