In situ synthesis of carbon incorporated TiO2 with long-term performance as anode for lithium-ion batteries

Abstract The carbon incorporated titanium dioxide (C–TiO 2 ) has been in-situ synthesized via facile flame-assisted approach using tetrabutyl orthotitanate as a precursor. The as-prepared C–TiO 2 samples are characterized by SEM, XRD, XPS, Raman spectroscopy, EDX, TGA and electrochemical measurements. It is found that carbon incorporated TiO 2 microspheres can be directly obtained without any post annealing. Enhanced lithium storage performance is observed for the resultant sample after ball milling. The reversible capacity remains 159.8 mAh g −1 at a specific current of 335 mA g −1 even after 960 charge–discharge cycles. The high capacity reversibility and good long-term cycling capability are attributed to the inherently incorporated carbon species, which efficiently improve electronic conductivity. Meanwhile, the intrinsic crystal structure and enlarged contact area between electrode and electrolyte provide abundant channels for Li-ion transport. This work could not only make the prepared C–TiO 2 a promising anode candidate, but also present an available strategy for developing other electrode materials.

[1]  Yuehe Lin,et al.  Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. , 2012, Nanoscale.

[2]  V. Battaglia,et al.  Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance , 2014 .

[3]  Lianjun Liu,et al.  Synthesis of Carbon-TiO2 Nanocomposites with Enhanced Reversible Capacity and Cyclic Performance as Anodes for Lithium-Ion Batteries , 2015 .

[4]  Ji‐Yong Shin,et al.  Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries , 2012 .

[5]  R. Holze,et al.  Carbon anode materials for lithium ion batteries , 2003 .

[6]  Poulomi Roy,et al.  Nanostructured anode materials for lithium ion batteries , 2015 .

[7]  Shangjun Ding,et al.  New facile synthesis of TiO2 hollow sphere with an opening hole and its enhanced rate performance in lithium-ion batteries , 2013 .

[8]  Wei Li,et al.  Synthesis of graphene@Fe3O4@C core–shell nanosheets for high-performance lithium ion batteries , 2015 .

[9]  Young‐Jun Kim,et al.  Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries , 2011 .

[10]  L. Archer,et al.  Self‐Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium‐Ion Battery Electrodes , 2008 .

[11]  G. Borodi,et al.  Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries river basin, Western Romania , 2013, Chemistry Central Journal.

[12]  Zaiping Guo,et al.  Surface Engineering and Design Strategy for Surface‐Amorphized TiO2@Graphene Hybrids for High Power Li‐Ion Battery Electrodes , 2015, Advanced science.

[13]  Sang‐Chul Jung,et al.  Electrochemical properties of the TiO2(B) powders ball mill treated for lithium-ion battery application , 2013, Chemistry Central Journal.

[14]  Jonathan J. Travis,et al.  Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries , 2013, Nanotechnology.

[15]  L. Croguennec,et al.  Recent achievements on inorganic electrode materials for lithium-ion batteries. , 2015, Journal of the American Chemical Society.

[16]  Hongjuan Zhang,et al.  Ultrasmall TiO 2 nanoparticles embedded in nitrogen doped porous graphene for high rate and long life lithium ion batteries , 2014 .

[17]  J. Tu,et al.  MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance , 2012 .

[18]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[19]  Zhen Zhou,et al.  Synthesis of mesoporous wall-structured TiO2 on reduced graphene oxide nanosheets with high rate performance for lithium-ion batteries. , 2015, Chemistry.

[20]  C. Li,et al.  Sandwich-like Cr2O3–graphite intercalation composites as high-stability anode materials for lithium-ion batteries , 2015 .

[21]  Ying Yu,et al.  TiO2 mesoporous microspheres with nanorod structure: facile synthesis and superior electrochemical performance , 2014 .

[22]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[23]  X. Tao,et al.  Hybrid nanoarchitecture of rutile TiO2 nanoneedle/graphene for advanced lithium-ion batteries , 2015 .

[24]  I. Bello,et al.  Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries. , 2014, Journal of colloid and interface science.

[25]  Jong‐Min Lee,et al.  Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs) , 2014 .

[26]  Chun-Hua Yan,et al.  Green facile scalable synthesis of titania/carbon nanocomposites: new use of old dental resins. , 2014, ACS applied materials & interfaces.

[27]  Vinodkumar Etacheri,et al.  Chemically bonded TiO2-bronze nanosheet/reduced graphene oxide hybrid for high-power lithium ion batteries. , 2014, ACS nano.

[28]  S. Bianco,et al.  As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance , 2015 .

[29]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[30]  Yuehe Lin,et al.  Annealing-free synthesis of carbonaceous Nb2O5 microspheres by flame thermal method and enhanced photocatalytic activity for hydrogen evolution , 2015 .

[31]  Zhan Lin,et al.  Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries , 2011 .

[32]  Jian Luo,et al.  A facile nitridation method to improve the rate capability of TiO2 for lithium-ion batteries , 2014 .

[33]  G. Henkelman,et al.  Lithium insertion in nanostructured TiO(2)(B) architectures. , 2013, Accounts of chemical research.

[34]  Haihui Wang,et al.  A stable and high-capacity anode for lithium-ion battery: Fe2O3 wrapped by few layered graphene , 2015 .

[35]  Zhiyu Jiang,et al.  Carbon-incorporated TiO2 microspheres: Facile flame assisted hydrolysis of tetrabutyl orthotitanate and photocatalytic hydrogen production , 2012 .

[36]  Yan Yu,et al.  Atomic layer deposition derived amorphous TiO2 thin film decorating graphene nanosheets with superior rate capability , 2015 .

[37]  Jaehoon Kim,et al.  Template-free synthesis of hierarchical porous anatase TiO2 microspheres with carbon coating and their electrochemical properties , 2014 .

[38]  Baojun Li,et al.  Synthesis and superior anode performances of TiO2-carbon-rGO composites in lithium-ion batteries. , 2012, ACS applied materials & interfaces.

[39]  Xiaodong Chen,et al.  Mechanical Force‐Driven Growth of Elongated Bending TiO2‐based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries , 2014, Advanced materials.

[40]  Yongyao Xia,et al.  Ti-based compounds as anode materials for Li-ion batteries , 2012 .

[41]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[42]  S. George,et al.  Amorphous Ultrathin TiO2 Atomic Layer Deposition Films on Carbon Nanotubes as Anodes for Lithium Ion Batteries , 2015 .

[43]  Jiajun Chen,et al.  Recent Progress in Advanced Materials for Lithium Ion Batteries , 2013, Materials.

[44]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[45]  M. Chi,et al.  Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries , 2013 .

[46]  Danzhen Li,et al.  TiO2 nanotube array-graphene-CdS quantum dots composite film in Z-scheme with enhanced photoactivity and photostability. , 2014, ACS applied materials & interfaces.

[47]  W. Schuhmann,et al.  CNTs grown on oxygen-deficient anatase TiO2−δ as high-rate composite electrode material for lithium ion batteries , 2012 .

[48]  Hongsen Li,et al.  A Facile One-Pot Synthesis of TiO2/Nitrogen-Doped Reduced Graphene Oxide Nanocomposite as Anode Materials For High-Rate Lithium-Ion Batteries , 2014 .

[49]  Haipeng Guo,et al.  One-pot synthesis of FCNTs-wired TiO2 nanocomposites as anode materials for high-rate lithium ion batteries , 2014 .

[50]  W. Schuhmann,et al.  Reliable benchmark material for anatase TiO2 in Li-ion batteries : on the role of dehydration of commercial TiO2 , 2014 .

[51]  Yuyan Shao,et al.  Nanostructured carbon for energy storage and conversion , 2012 .