Curvature-dependent surface visualization of vascular structures

Efficient visualization of vascular structures is essential for therapy planning and medical education. Existing techniques achieve high-quality visualization of vascular surfaces at the cost of low rendering speed and large size of resulting surface. In this paper, we present an approach for visualizing vascular structures by exploiting the local curvature information of a given surface. To handle complex topology of loop and multiple parents and/or multiple children, bidirectional adaptive sampling and modified normal calculations at joints are proposed. The proposed method has been applied to cerebral vascular trees, liver vessel trees, and aortic vessel trees. The experimental results show that it can obtain a high-quality surface visualization with fewer polygons in the approximation.

[1]  Timothy J. Baker,et al.  A Comparison Of Triangle Quality Measures , 2001, IMR.

[2]  Ken Masamune,et al.  Region-Growing Based Feature Extraction Algorithm for Tree-Like Objects , 1996, VBC.

[3]  D. White,et al.  6th International Meshing Roundtable '97 , 1997 .

[4]  Karl Krissian,et al.  Smooth vasculature reconstruction from patient scan , 2005 .

[5]  Xin Ma Latest Development of an Interventional Radiology Training Simulation System: NeuroCath , 2007, HCI.

[6]  William H. Press,et al.  Numerical recipes in C , 2002 .

[7]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[8]  Guido Brunnett,et al.  Geometric Modeling for Scientific Visualization , 2010 .

[9]  Ashish Amresh,et al.  Adaptive Subdivision Schemes for Triangular Meshes , 2003 .

[10]  A. James Stewart,et al.  Curvature-Dependent Triangulation of Implicit Surfaces , 2001, IEEE Computer Graphics and Applications.

[11]  Katja Bühler,et al.  Geometric Methods for Vessel Visualization and Quantification — A Survey , 2004 .

[12]  Gabriel Zachmann,et al.  Advanced Algorithms in Medical Computer Graphics , 2008, Eurographics.

[13]  Stephane Cotin,et al.  A Segmentation and Reconstruction Technique for 3D Vascular Structures , 2005, MICCAI.

[14]  Hüseyin Tek,et al.  Geometric modeling of tubular structures , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[15]  Wieslaw Lucjan Nowinski,et al.  On Geometric Modeling of the Human Intracranial Venous System , 2008, IEEE Transactions on Medical Imaging.

[16]  Alexander Bornik,et al.  Reconstruction and Representation of Tubular Structures using Simplex Meshes , 2005, WSCG.

[17]  S. Z. Li Adaptive sampling and mesh generation , 1995, Comput. Aided Des..

[18]  David A. Steinman,et al.  A Framework for Geometric Analysis of Vascular Structures: Application to Cerebral Aneurysms , 2009, IEEE Transactions on Medical Imaging.

[19]  Bernhard Preim,et al.  Visualization and interaction techniques for the exploration of vascular structures , 2001, Proceedings Visualization, 2001. VIS '01..

[20]  Bernhard Preim,et al.  Visualization of vasculature with convolution surfaces: method, validation and evaluation , 2005, IEEE Transactions on Medical Imaging.

[21]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2005, SIGGRAPH Courses.

[22]  Bernhard Preim,et al.  3D Visualization of Vasculature: An Overview , 2008, Visualization in Medicine and Life Sciences.

[23]  Andreas Pommert,et al.  A Realistic Model of the Inner Organs from the Visible Human Data , 2000, MICCAI.

[24]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[25]  Bernhard Preim,et al.  Model-free Surface Visualization of Vascular Trees , 2007, EuroVis.

[26]  Anton L. Fuhrmann,et al.  SMART — SURFACE MODELS FROM BY-AXIS-AND-RADIUS-DEFINED TUBES , 2001 .

[27]  Marc Pollefeys,et al.  IEEE Computer Society Conference on Computer Vision and Pattern Recognition workshops, 2008 , 2008, CVPR 2008.

[28]  Bernhard Preim,et al.  Implicit vessel surface reconstruction for visualization and CFD simulation , 2008, International Journal of Computer Assisted Radiology and Surgery.

[29]  Katja Bühler,et al.  Surface models of tube trees , 2004 .

[30]  Steven Haker,et al.  Differential and Numerically Invariant Signature Curves Applied to Object Recognition , 1998, International Journal of Computer Vision.

[31]  C. Grimm,et al.  Improved Curvature Estimation on Triangular Meshes , 2004 .