Radar-Based Face Recognition: One-Shot Learning Approach

[1]  Robin J. Evans,et al.  Hand-Gesture Recognition Using Two-Antenna Doppler Radar With Deep Convolutional Neural Networks , 2019, IEEE Sensors Journal.

[2]  Sinan Gezici,et al.  Multiperson Tracking With a Network of Ultrawideband Radar Sensors Based on Gaussian Mixture PHD Filters , 2015, IEEE Sensors Journal.

[3]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[4]  Gulshan Kumar,et al.  A Survey of Deep Learning and Its Applications: A New Paradigm to Machine Learning , 2019, Archives of Computational Methods in Engineering.

[5]  W. D. Jones,et al.  Keeping cars from crashing , 2001 .

[6]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[7]  Abien Fred Agarap Deep Learning using Rectified Linear Units (ReLU) , 2018, ArXiv.

[8]  Gregory R. Koch,et al.  Siamese Neural Networks for One-Shot Image Recognition , 2015 .

[9]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[10]  Murat Torlak,et al.  Automotive Radars: A review of signal processing techniques , 2017, IEEE Signal Processing Magazine.

[11]  Avik Santra,et al.  One-Shot Learning for Robust Material Classification Using Millimeter-Wave Radar System , 2018, IEEE Sensors Letters.

[12]  Debalina Ghosh,et al.  Detection of Multiple Humans Equidistant From IR-UWB SISO Radar Using Machine Learning , 2020, IEEE Sensors Letters.

[13]  Patrick Schrempf,et al.  RadarCat: Radar Categorization for Input & Interaction , 2016, UIST.

[14]  Seong-Cheol Kim,et al.  Detection and Localization of People Inside Vehicle Using Impulse Radio Ultra-Wideband Radar Sensor , 2020, IEEE Sensors Journal.

[15]  Ta-Sung Lee,et al.  Design of an FMCW radar baseband signal processing system for automotive application , 2016, SpringerPlus.

[16]  Oge Marques,et al.  Dropout vs. batch normalization: an empirical study of their impact to deep learning , 2020, Multimedia Tools and Applications.

[17]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[18]  Andrea Giorgetti,et al.  Indoor detection and tracking of human targets with UWB radar sensor networks , 2016, 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB).

[19]  Shaun Quegan,et al.  Radar Remote Sensing , 1999 .

[20]  Hyung-Min Park,et al.  DNN-Based Human Face Classification Using 61 GHz FMCW Radar Sensor , 2020, IEEE Sensors Journal.

[21]  H. Rohling,et al.  OS CFAR performance in a 77 GHz radar sensor for car application , 1996, Proceedings of International Radar Conference.

[22]  A. Sanderovich,et al.  Face Verification Using 60~GHz 802.11 waveforms , 2020, ArXiv.

[23]  Anca L. Ralescu,et al.  Confusion Matrix-based Feature Selection , 2011, MAICS.

[24]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[25]  Hilmi R. Dajani,et al.  Event Recognition for Contactless Activity Monitoring Using Phase-Modulated Continuous Wave Radar , 2017, IEEE Transactions on Biomedical Engineering.

[26]  Xinyu Li,et al.  A Survey of Deep Learning-Based Human Activity Recognition in Radar , 2019, Remote. Sens..

[27]  Hermann Rohling,et al.  Pedestrian recognition based on 24 GHz radar sensors , 2010, 11-th INTERNATIONAL RADAR SYMPOSIUM.

[28]  Qingmin Liao,et al.  A Study on Radar Target Detection Based on Deep Neural Networks , 2019, IEEE Sensors Letters.

[29]  Gerald J. Sussman,et al.  Sparse Representations for Fast, One-Shot Learning , 1997, AAAI/IAAI.