Numerical quadratic energy minimization bound to convex constraints in thin-film micromagnetics

We analyze the reduced model for thin-film devices in stationary micromagnetics proposed in DeSimone et al. (R Soc Lond Proc Ser A Math Phys Eng Sci 457(2016):2983–2991, 2001). We introduce an appropriate functional analytic framework and prove well-posedness of the model in that setting. The scheme for the numerical approximation of solutions consists of two ingredients: The energy space is discretized in a conforming way using Raviart–Thomas finite elements; the non-linear but convex side constraint is treated with a penalty method. This strategy yields a convergent sequence of approximations as discretization and penalty parameter vanish. The proof generalizes to a large class of minimization problems and is of interest beyond the scope of thin-film micromagnetics.

[1]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[2]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[3]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[4]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[5]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[6]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[7]  Andreas Prohl,et al.  Numerical analysis of relaxed micromagnetics by penalised finite elements , 2001, Numerische Mathematik.

[8]  Isaak D. Mayergoyz,et al.  The science of hysteresis , 2005 .

[9]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[10]  Ernst P. Stephan,et al.  A priori error estimates for hp penalty BEM for contact problems in elasticity , 2007 .

[11]  Robert V. Kohn,et al.  A reduced theory for thin‐film micromagnetics , 2002 .

[12]  J. Melenk,et al.  REDUCED MODEL IN THIN-FILM MICROMAGNETICS , 2009 .

[13]  Kazufumi Ito,et al.  Lagrange multiplier approach to variational problems and applications , 2008, Advances in design and control.

[14]  G. Burton Sobolev Spaces , 2013 .

[15]  J. Deny,et al.  Les espaces du type de Beppo Levi , 1954 .

[16]  Ernst P. Stephan,et al.  Boundary integral equations for screen problems in IR3 , 1987 .

[17]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[18]  P. Raviart,et al.  Primal hybrid finite element methods for 2nd order elliptic equations , 1977 .

[19]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[20]  Carsten Carstensen,et al.  Numerical Analysis for a Macroscopic Model in Micromagnetics , 2004, SIAM J. Numer. Anal..

[21]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[22]  Carsten Carstensen,et al.  Effective simulation of a macroscopic model for stationary micromagnetics , 2005 .

[23]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Robert V. Kohn,et al.  Two–dimensional modelling of soft ferromagnetic films , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .