Surface modulation of silicon nitride ceramics for orthopaedic applications.

[1]  W. Zhu,et al.  Point-Defect Populations As Induced by Cation/Anion Substitution in β-Si3N4 Lattice. A Cathodoluminescence Study , 2015 .

[2]  M. Horká,et al.  Separation of methicillin-resistant from methicillin-susceptible Staphylococcus aureus by electrophoretic methods in fused silica capillaries etched with supercritical water. , 2014, Analytical chemistry.

[3]  John Ballato,et al.  Materials Development for Next Generation Optical Fiber , 2014, Materials.

[4]  M. Arts,et al.  The SNAP trial: a double blind multi-center randomized controlled trial of a silicon nitride versus a PEEK cage in transforaminal lumbar interbody fusion in patients with symptomatic degenerative lumbar disc disorders: study protocol , 2014, BMC Musculoskeletal Disorders.

[5]  J. Vojtaššák,et al.  Porous silicon nitride ceramics designed for bone substitute applications , 2013 .

[6]  M. Arts,et al.  The CASCADE trial: effectiveness of ceramic versus PEEK cages for anterior cervical discectomy with interbody fusion; protocol of a blinded randomized controlled trial , 2013, BMC Musculoskeletal Disorders.

[7]  T. J. Webster,et al.  Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants. , 2012, Acta biomaterialia.

[8]  Sonny B. Bal,et al.  Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium , 2012, International journal of nanomedicine.

[9]  B. Bal,et al.  Orthopedic applications of silicon nitride ceramics. , 2012, Acta biomaterialia.

[10]  Jeffrey C. Shearer,et al.  Isoelectric points of plasma‐modified and aged silicon oxynitride surfaces measured using contact angle titrations , 2011 .

[11]  D. Brodke,et al.  SILICON NITRIDE: A NEW MATERIAL FOR SPINAL IMPLANTS , 2010 .

[12]  M. Anderson,et al.  Bone ingrowth into porous silicon nitride. , 2009, Journal of biomedical materials research. Part A.

[13]  I. Clarke,et al.  Testing of silicon nitride ceramic bearings for total hip arthroplasty. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[14]  D. Gardini,et al.  On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part II: chemical stability and wear resistance in body environment , 2008, Journal of materials science. Materials in medicine.

[15]  Alida Bellosi,et al.  On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part I: processing, microstructure, mechanical properties, cytotoxicity , 2008, Journal of materials science. Materials in medicine.

[16]  J. C. Bressiani,et al.  Tissue response around silicon nitride implants in rabbits. , 2008, Journal of biomedical materials research. Part A.

[17]  G. Franks,et al.  Charging Behavior at the Alumina–Water Interface and Implications for Ceramic Processing , 2007 .

[18]  Michael D. Ries,et al.  Ceramics for Prosthetic Hip and Knee Joint Replacement , 2007 .

[19]  R. J. Hunter,et al.  Measurement and Interpretation of Electrokinetic Phenomena (IUPAC Technical Report) , 2005 .

[20]  Y. Sekiguchi,et al.  In-depth analysis of residual stress in an alumina coating on silicon nitride substrate using confocal Raman piezo-spectroscopy , 2007 .

[21]  F. Lange The sophistication of ceramic science through silicon nitride studies , 2006 .

[22]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[23]  Aldo R Boccaccini,et al.  45S5 Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. , 2006, Biomaterials.

[24]  Kelvin H Lee,et al.  A surface modification strategy on silicon nitride for developing biosensors. , 2005, Analytical biochemistry.

[25]  T. Nishida,et al.  Stress Dependence of the Raman Spectrum of β‐Silicon Nitride , 2005 .

[26]  Hua-Tay Lin,et al.  Microstructural Design of Silicon Nitride with Improved Fracture Toughness: I, Effects of Grain Shape and Size , 2005 .

[27]  F. Riley Silicon Nitride and Related Materials , 2004 .

[28]  J. Lewis Colloidal Processing of Ceramics , 2004 .

[29]  Y. Missirlis,et al.  Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. , 2004, European cells & materials.

[30]  A. Neumann,et al.  Comparative investigation of the biocompatibility of various silicon nitride ceramic qualities in vitro , 2004, Journal of materials science. Materials in medicine.

[31]  A. Neumann,et al.  Histological and microradiographic appearances of Silicon Nitride and Aluminum Oxide in a rabbit femur implantation model * , 2004 .

[32]  Karin Schroën,et al.  Tailor-made functionalization of silicon nitride surfaces. , 2004, Journal of the American Chemical Society.

[33]  J. Gubicza,et al.  Studies on Atmospheric Ageing of Nanosized Silicon Nitride Powders , 2004 .

[34]  Gert Roebben,et al.  Quantitative determination of the volume fraction of intergranular amorphous phase in sintered silicon nitride , 2004 .

[35]  Abraham Marmur,et al.  Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be? , 2003 .

[36]  G. Pezzotti,et al.  Micromechanical analysis of silicon nitride: a comparative study by fracture mechanics and Raman microprobe spectroscopy , 2002 .

[37]  Uwe Thiele,et al.  Wetting of textured surfaces , 2002 .

[38]  Larry L Hench,et al.  Third-Generation Biomedical Materials , 2002, Science.

[39]  H. Nakagawa,et al.  Characterization of the Oxidized ß-Si_3N_4 Whisker Surface Layer Using XPS and TOF-SIMS , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[40]  H. Bender,et al.  Comparison between wet HF etching and vapor HF etching for sacrificial oxide removal , 2000 .

[41]  Malte Hermansson,et al.  The DLVO theory in microbial adhesion , 1999 .

[42]  D. Hungerford,et al.  Enhanced proliferation and osteocalcin production by human osteoblast-like MG63 cells on silicon nitride ceramic discs. , 1999, Biomaterials.

[43]  S. Tanaka,et al.  Assignment of the Raman active vibration modes of β-Si3N4 using micro-Raman scattering , 1999 .

[44]  Tadashi Kokubo,et al.  Apatite formation on surfaces of ceramics, metals and polymers in body environment , 1998 .

[45]  L. Cooper,et al.  Cell and matrix reactions at titanium implants in surgically prepared rat tibiae. , 1997, The International journal of oral & maxillofacial implants.

[46]  H. Baltes,et al.  REVIEW ARTICLE: Silicon dioxide sacrificial layer etching in surface micromachining , 1997 .

[47]  K. R. Williams,et al.  Etch rates for micromachining processing , 1996 .

[48]  T. N. Taylor,et al.  Kinetics of Thermal Oxidation of Silicon Nitride Powders , 1996 .

[49]  H. Harms,et al.  Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and Teflon , 1996, Journal of bacteriology.

[50]  S. A. Mezzasalma,et al.  Characterization of Silicon Nitride Surface in Water and Acid Environment: A General Approach to the Colloidal Suspensions , 1996 .

[51]  J. Sonnefeld Determination of surface charge density parameters of silicon nitride , 1996 .

[52]  F. Kaufman,et al.  Wettability of Polished Silicon Oxide Surfaces , 1996 .

[53]  S. Raghavan,et al.  Electrokinetic Characteristics of Nitride Wafers in Aqueous Solutions and Their Impact on Particulate Deposition , 1994 .

[54]  S. Malghan,et al.  Effects of soxhlet extraction on the surface oxide layer of silicon nitride powders , 1993 .

[55]  Ling Wang,et al.  Oxidation of sintered silicon nitride , 1993, Journal of Materials Science.

[56]  B. Derjaguin,et al.  Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes , 1993 .

[57]  Ling Wang,et al.  Oxidation of sintered silicon nitride: I. Phase composition and microstructure , 1992 .

[58]  I. Tanaka,et al.  Electronic structure behind the mechanical properties of β-sialons , 1992 .

[59]  J. T. Donner,et al.  Characterization of β-Silicon Nitride Whiskers , 1990 .

[60]  C. R. Howlett,et al.  The effect of silicon nitride ceramic on rabbit skeletal cells and tissue. An in vitro and in vivo investigation. , 1989, Clinical orthopaedics and related research.

[61]  F. Castro,et al.  Sinter and sinter-HIP of silicon nitride ceramics with yttria and alumina additions , 1989 .

[62]  P. Greil Processing of silicon nitride ceramics , 1989 .

[63]  M. Rahaman,et al.  Surface Characterization of Silicon Nitride and Silicon Carbide Powders , 1986 .

[64]  M. Baraton,et al.  FT-IR study of the surface properties of silicon nitride , 1986 .

[65]  A. Takase,et al.  Raman spectroscopic study of β-sialons in the system Si3N4-Al2O3-AIN , 1984 .

[66]  D. Clarke,et al.  STRENGTHENING OF A SINTERED SILICON NITRIDE BY A POST-FABRICATION HEAT TREATMENT , 1982 .

[67]  D. Clarke,et al.  Oxidation of Si3N4 Alloys: Relation to Phase Equilibria in the System Si3N4-SiO2-MgO , 1980 .

[68]  Egon Matijević,et al.  Chemistry of silica , 1980 .

[69]  W. A. Pliskin,et al.  Surface Oxidation of Silicon Nitride Films , 1976 .

[70]  F. Lange RELATION BETWEEN STRENGTH, FRACTURE ENERGY, AND MICROSTRUCTURE OF HOT‐PRESSED SI3N4 , 1973 .

[71]  F. Lange Relation Between Strength, Fracture Energy, and Microstructure of Hot-Pressed Si3N4 , 1973 .

[72]  George A. Parks,et al.  The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems , 1965 .

[73]  J. O. Harris,et al.  THE ISOELECTRIC POINT OF BACTERIAL CELLS , 1953, Journal of bacteriology.

[74]  C. Siedlecki,et al.  Submicron-textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation. , 2012, Acta biomaterialia.

[75]  I. Clarke,et al.  Fabrication and testing of silicon nitride bearings in total hip arthroplasty: winner of the 2007 "HAP" PAUL Award. , 2009, The Journal of arthroplasty.

[76]  C. Santos,et al.  Development and cytotoxicity evaluation of SiAlONs ceramics , 2007 .

[77]  S. Steinemann Metal implants and surface reactions. , 1996, Injury.

[78]  B D Boyan,et al.  Role of material surfaces in regulating bone and cartilage cell response. , 1996, Biomaterials.

[79]  J. S. Reed,et al.  Principles of ceramics processing , 1995 .

[80]  P. Greil,et al.  Evaluation of oxygen content on silicon nitride powder surface from the measurement of the isoelectric point , 1991 .

[81]  L. Bergström,et al.  Interfacial Characterization of Silicon Nitride Powders , 1989 .

[82]  B. Kasemo,et al.  Biomaterial and implant surfaces: a surface science approach. , 1988, The International journal of oral & maxillofacial implants.

[83]  J. Israelachvili Intermolecular and surface forces , 1985 .

[84]  F Sutter,et al.  The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. , 1981, Journal of maxillofacial surgery.

[85]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[86]  Yoshiki Sato,et al.  Studies of the state of iron contained in α- and β-silicon nitride by Mössbauer and Raman effects , 1979 .

[87]  J. A. V. BUTLER,et al.  Theory of the Stability of Lyophobic Colloids , 1948, Nature.