Characterization of Genetically Targeted Neuron Types in the Zebrafish Optic Tectum

The optically transparent larval zebrafish is ideally suited for in vivo analyses of neural circuitry controlling visually guided behaviors. However, there is a lack of information regarding specific cell types in the major retinorecipient brain region of the fish, the optic tectum. Here we report the characterization of three previously unidentified tectal cell types that are specifically labeled by dlx5/6 enhancer elements. In vivo laser-scanning microscopy in conjunction with ex vivo array tomography revealed that these neurons differ in their morphologies, synaptic connectivity, and neurotransmitter phenotypes. The first type is an excitatory bistratified periventricular interneuron that forms a dendritic arbor in the retinorecipient stratum fibrosum et griseum superficiale (SFGS) and an axonal arbor in the stratum griseum centrale (SGC). The second type, a GABAergic non-stratified periventricular interneuron, extends a bushy arbor containing both dendrites and axons into the SGC and the deepest sublayers of the SFGS. The third type is a GABAergic periventricular projection neuron that extends a dendritic arbor into the SGC and a long axon to the torus semicircularis, medulla oblongata, and anterior hindbrain. Interestingly, the same axons form en passant synapses within the deepest neuropil layer of the tectum, the stratum album centrale. This approach revealed several novel aspects of tectal circuitry, including: (1) a glutamatergic mode of transmission from the superficial, retinorecipient neuropil layers to the deeper, output layers, (2) the presence of interneurons with mixed dendrite/axon arbors likely involved in local processing, and (3) a heretofore unknown GABAergic tectofugal projection to midbrain and hindbrain. These observations establish a framework for studying the morphological and functional differentiation of neural circuits in the zebrafish visual system.

[1]  Toshihiko Hosoya,et al.  Genetic Single-Cell Mosaic Analysis Implicates ephrinB2 Reverse Signaling in Projections from the Posterior Tectum to the Hindbrain in Zebrafish , 2007, The Journal of Neuroscience.

[2]  M. Ekker,et al.  Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. , 2002, Development.

[3]  W. K. Metcalfe,et al.  T reticular interneurons: A class of serially repeating cells in the zebrafish hindbrain , 1985, The Journal of comparative neurology.

[4]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.

[5]  C. Niell,et al.  Functional Imaging Reveals Rapid Development of Visual Response Properties in the Zebrafish Tectum , 2005, Neuron.

[6]  S. Bertuzzi,et al.  Compromised generation of GABAergic interneurons in the brains of Vax1-/- mice , 2004, Development.

[7]  A. Ghysen,et al.  Second-order projection from the posterior lateral line in the early zebrafish brain , 2006, Neural Development.

[8]  Stephen J. Smith,et al.  In Vivo Trafficking and Targeting of N-Cadherin to Nascent Presynaptic Terminals , 2004, The Journal of Neuroscience.

[9]  M. Ekker,et al.  Characterization of a distinct subpopulation of striatal projection neurons expressing the Dlx genes in the basal ganglia through the activity of the I56ii enhancer. , 2008, Developmental biology.

[10]  R. Friedrich,et al.  Early functional development of interneurons in the zebrafish olfactory bulb , 2007, The European journal of neuroscience.

[11]  Martin P Meyer,et al.  Evidence from In Vivo Imaging That Synaptogenesis Guides the Growth and Branching of Axonal Arbors by Two Distinct Mechanisms , 2006, The Journal of Neuroscience.

[12]  B. Torres,et al.  Eye movements evoked by electrical microstimulation of the mesencephalic reticular formation in goldfish , 2006, Neuroscience.

[13]  Matthew C. Smear,et al.  Vesicular Glutamate Transport at a Central Synapse Limits the Acuity of Visual Perception in Zebrafish , 2007, Neuron.

[14]  R. Rübsamen,et al.  GABAergic terminals in nucleus maznocellularis and laminaris originate from the superior olivary nucleus , 1994, The Journal of comparative neurology.

[15]  Herwig Baier,et al.  Targeting neural circuitry in zebrafish using GAL4 enhancer trapping , 2007, Nature Methods.

[16]  P. Wahle,et al.  Neurotransmitter profile of saccadic omnipause neurons in nucleus raphe interpositus , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  D. Clemente,et al.  Development of the cholinergic system in the brain and retina of the zebrafish , 2005, Brain Research Bulletin.

[18]  Herwig Baier,et al.  Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet , 2007, Nature Neuroscience.

[19]  Herwig Baier,et al.  A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection , 2005, Development.

[20]  J. Fetcho,et al.  Ontogeny and innervation patterns of dopaminergic, noradrenergic, and serotonergic neurons in larval zebrafish , 2004, The Journal of comparative neurology.

[21]  Gail Mandel,et al.  Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish , 2004, The Journal of comparative neurology.

[22]  W. Birchmeier,et al.  Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. , 2003, Neuron.

[23]  Herwig Baier,et al.  Visual Prey Capture in Larval Zebrafish Is Controlled by Identified Reticulospinal Neurons Downstream of the Tectum , 2005, The Journal of Neuroscience.

[24]  Ethan K. Scott,et al.  Filtering of Visual Information in the Tectum by an Identified Neural Circuit , 2010, Science.

[25]  M. Feller,et al.  Genetic Identification of an On-Off Direction- Selective Retinal Ganglion Cell Subtype Reveals a Layer-Specific Subcortical Map of Posterior Motion , 2009, Neuron.

[26]  Ethan K. Scott,et al.  The cellular architecture of the larval zebrafish tectum , as revealed by Gal 4 enhancer trap lines , 2022 .

[27]  W. Birchmeier,et al.  Role of β-Catenin in Synaptic Vesicle Localization and Presynaptic Assembly , 2003, Neuron.

[28]  D. Sparks The brainstem control of saccadic eye movements , 2002, Nature Reviews Neuroscience.

[29]  Stephen J. Smith,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[30]  J. Epstein,et al.  A nonclassical bHLH Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. , 2008, Genes & development.

[31]  Y. Ono,et al.  Helt determines GABAergic over glutamatergic neuronal fate by repressing Ngn genes in the developing mesencephalon , 2007, Development.

[32]  J. Meek,et al.  Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum , 1983, Brain Research Reviews.

[33]  Angel Amores,et al.  Regulatory roles of conserved intergenic domains in vertebrate Dlx bigene clusters. , 2003, Genome research.

[34]  Ethan K. Scott,et al.  Focusing on optic tectum circuitry through the lens of genetics , 2010, BMC Biology.

[35]  Martin P Meyer,et al.  In vivo imaging of synapse formation on a growing dendritic arbor , 2004, Nature Neuroscience.

[36]  N. Schellart,et al.  A golgi study of goldfish optic tectum , 1978, The Journal of comparative neurology.

[37]  F. Benfenati,et al.  Synaptophysin I controls the targeting of VAMP2/synaptobrevin II to synaptic vesicles. , 2003, Molecular biology of the cell.

[38]  W. K. Metcalfe,et al.  Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva , 1986, The Journal of comparative neurology.

[39]  O. Hobert,et al.  The molecular and gene regulatory signature of a neuron , 2010, Trends in Neurosciences.

[40]  Masahiko Watanabe,et al.  Multiple‐site optical recording for characterization of functional synaptic organization of the optic tectum of rainbow trout , 2002, The European journal of neuroscience.

[41]  S. Fraser,et al.  Tracing transgene expression in living zebrafish embryos. , 2001, Developmental biology.

[42]  Jeffery R Wickens,et al.  Inhibitory interactions between spiny projection neurons in the rat striatum. , 2002, Journal of neurophysiology.

[43]  P. De Camilli,et al.  The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  J. E. Vaughn,et al.  Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra , 1976, Brain Research.

[45]  C. Stuermer,et al.  Dynamics of process formation during differentiation of tectal neurons in embryonic zebrafish. , 1997, Journal of neurobiology.

[46]  Aristides B. Arrenberg,et al.  Optogenetic Localization and Genetic Perturbation of Saccade-Generating Neurons in Zebrafish , 2010, The Journal of Neuroscience.

[47]  M. Goulding,et al.  Tlx3 and Tlx1 are post-mitotic selector genes determining glutamatergic over GABAergic cell fates , 2004, Nature Neuroscience.

[48]  Wei R. Chen,et al.  The olfactory granule cell: From classical enigma to central role in olfactory processing , 2007, Brain Research Reviews.