Non-asymptotic fractional order differentiators via an algebraic parametric method

Recently, Mboup, Join and Fliess [27], [28] introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method [7], [8]. In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie's modified Riemann-Liouville derivative [14]. Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations.

[1]  Guy Jumarie,et al.  Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative , 2009, Appl. Math. Lett..

[2]  Hebertt Sira-Ramírez,et al.  Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques , 2007 .

[3]  G. Jumarie FOURIER'S TRANSFORM OF FRACTIONAL ORDER VIA MITTAG-LEFFLER FUNCTION AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE , 2008 .

[4]  Alain Oustaloup,et al.  From fractal robustness to the CRONE control , 1999 .

[5]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[6]  Olivier Gibaru,et al.  Differentiation by integration with Jacobi polynomials , 2011, J. Comput. Appl. Math..

[7]  M. Fliess,et al.  On linear systems with a fractional derivation: introductory theory and examples , 1998 .

[8]  Vicente Feliú Batlle,et al.  An algebraic frequency estimator for a biased and noisy sinusoidal signal , 2007, Signal Process..

[9]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[10]  J. Sabatier,et al.  Crone control of a nonlinear hydraulic actuator , 2002 .

[11]  Olivier Gibaru,et al.  Error analysis of Jacobi derivative estimators for noisy signals , 2011, Numerical Algorithms.

[12]  I. Podlubny Fractional differential equations , 1998 .

[13]  M. Fliess,et al.  Questioning some paradigms of signal processing via concrete examples , 2003 .

[14]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[15]  Michel Fliess Critique du rapport signal à bruit en communications numériques -- Questioning the signal to noise ratio in digital communications , 2008, ArXiv.

[16]  M. Fliess,et al.  Compression différentielle de transitoires bruités , 2004 .

[17]  Wilfrid Perruquetti,et al.  Fast state estimation in linear time-varying systems: An algebraic approach , 2008, 2008 47th IEEE Conference on Decision and Control.

[18]  Alain Oustaloup,et al.  On Lead-Acid-Battery Resistance and Cranking-Capability Estimation , 2010, IEEE Transactions on Industrial Electronics.

[19]  Michel Fliess,et al.  Analyse non standard du bruit , 2006, ArXiv.

[20]  Olivier Gibaru,et al.  Convergence Rate of the Causal Jacobi Derivative Estimator , 2010, Curves and Surfaces.

[21]  Mamadou Mboup,et al.  Estimation algébrique des paramètres intrinsèques d'un signal sinusoïdal biaisé en environnement bruité , 2011 .

[22]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[23]  Olivier Gibaru,et al.  Error analysis for a class of numerical differentiator: application to state observation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[24]  Mamadou Mboup,et al.  Différenciation numérique multivariable I : estimateurs algébriques et structure , 2010 .

[25]  G. Jumarie,et al.  Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..

[26]  Dayan Liu,et al.  An error analysis in the algebraic estimation of a noisy sinusoidal signal , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[27]  Maria D. Miranda,et al.  Algebraic parameter estimation of damped exponentials , 2007, 2007 15th European Signal Processing Conference.

[28]  Yangquan Chen,et al.  Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..

[29]  J. Sabatier,et al.  From fractal robustness to the CRONE approach , 1998 .

[30]  J. Machado Calculation of fractional derivatives of noisy data with genetic algorithms , 2009 .

[31]  M. Mboup Parameter estimation for signals described by differential equations , 2009 .

[32]  Adam Loverro,et al.  Fractional Calculus : History , Definitions and Applications for the Engineer , 2004 .

[33]  M. Fliess,et al.  A revised look at numerical differentiation with an application to nonlinear feedback control , 2007, 2007 Mediterranean Conference on Control & Automation.

[34]  Olivier Gibaru,et al.  Parameters estimation of a noisy sinusoidal signal with time-varying amplitude , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[35]  Eric Wai Ming Lee,et al.  FRACTIONAL VARIATIONAL ITERATION METHOD AND ITS APPLICATION , 2010 .

[36]  M. Mboup,et al.  An algebraic method for multi-dimensional derivative estimation , 2008, 2008 16th Mediterranean Conference on Control and Automation.

[37]  Guy Jumarie,et al.  Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions , 2009, Appl. Math. Lett..

[38]  Ji-Huan He,et al.  A SHORT REMARK ON FRACTIONAL VARIATIONAL ITERATION METHOD , 2011 .

[39]  M. Fliess,et al.  Sur les systèmes linéaires à dérivation non entière , 1997 .

[40]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[41]  Yangquan Chen,et al.  Digital Fractional Order Savitzky-Golay Differentiator , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[42]  M. A Course of Pure Mathematics , 1909, Nature.

[43]  Jean-Pierre Richard,et al.  Multivariate numerical differentiation , 2011, J. Comput. Appl. Math..

[44]  M. Fliess,et al.  An algebraic receiver for full response CPM demodulation , 2006, 2006 International Telecommunications Symposium.

[45]  Eric S. Lander,et al.  AN ALGEBRAIC APPROACH , 1983 .

[46]  M. Fliess,et al.  An algebraic framework for linear identification , 2003 .