Non-asymptotic fractional order differentiators via an algebraic parametric method
暂无分享,去创建一个
[1] Guy Jumarie,et al. Laplace's transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative , 2009, Appl. Math. Lett..
[2] Hebertt Sira-Ramírez,et al. Closed-loop parametric identification for continuous-time linear systems via new algebraic techniques , 2007 .
[3] G. Jumarie. FOURIER'S TRANSFORM OF FRACTIONAL ORDER VIA MITTAG-LEFFLER FUNCTION AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE , 2008 .
[4] Alain Oustaloup,et al. From fractal robustness to the CRONE control , 1999 .
[5] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[6] Olivier Gibaru,et al. Differentiation by integration with Jacobi polynomials , 2011, J. Comput. Appl. Math..
[7] M. Fliess,et al. On linear systems with a fractional derivation: introductory theory and examples , 1998 .
[8] Vicente Feliú Batlle,et al. An algebraic frequency estimator for a biased and noisy sinusoidal signal , 2007, Signal Process..
[9] Alain Oustaloup,et al. The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.
[10] J. Sabatier,et al. Crone control of a nonlinear hydraulic actuator , 2002 .
[11] Olivier Gibaru,et al. Error analysis of Jacobi derivative estimators for noisy signals , 2011, Numerical Algorithms.
[12] I. Podlubny. Fractional differential equations , 1998 .
[13] M. Fliess,et al. Questioning some paradigms of signal processing via concrete examples , 2003 .
[14] K. Miller,et al. An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .
[15] Michel Fliess. Critique du rapport signal à bruit en communications numériques -- Questioning the signal to noise ratio in digital communications , 2008, ArXiv.
[16] M. Fliess,et al. Compression différentielle de transitoires bruités , 2004 .
[17] Wilfrid Perruquetti,et al. Fast state estimation in linear time-varying systems: An algebraic approach , 2008, 2008 47th IEEE Conference on Decision and Control.
[18] Alain Oustaloup,et al. On Lead-Acid-Battery Resistance and Cranking-Capability Estimation , 2010, IEEE Transactions on Industrial Electronics.
[19] Michel Fliess,et al. Analyse non standard du bruit , 2006, ArXiv.
[20] Olivier Gibaru,et al. Convergence Rate of the Causal Jacobi Derivative Estimator , 2010, Curves and Surfaces.
[21] Mamadou Mboup,et al. Estimation algébrique des paramètres intrinsèques d'un signal sinusoïdal biaisé en environnement bruité , 2011 .
[22] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[23] Olivier Gibaru,et al. Error analysis for a class of numerical differentiator: application to state observation , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.
[24] Mamadou Mboup,et al. Différenciation numérique multivariable I : estimateurs algébriques et structure , 2010 .
[25] G. Jumarie,et al. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..
[26] Dayan Liu,et al. An error analysis in the algebraic estimation of a noisy sinusoidal signal , 2008, 2008 16th Mediterranean Conference on Control and Automation.
[27] Maria D. Miranda,et al. Algebraic parameter estimation of damped exponentials , 2007, 2007 15th European Signal Processing Conference.
[28] Yangquan Chen,et al. Matrix approach to discrete fractional calculus II: Partial fractional differential equations , 2008, J. Comput. Phys..
[29] J. Sabatier,et al. From fractal robustness to the CRONE approach , 1998 .
[30] J. Machado. Calculation of fractional derivatives of noisy data with genetic algorithms , 2009 .
[31] M. Mboup. Parameter estimation for signals described by differential equations , 2009 .
[32] Adam Loverro,et al. Fractional Calculus : History , Definitions and Applications for the Engineer , 2004 .
[33] M. Fliess,et al. A revised look at numerical differentiation with an application to nonlinear feedback control , 2007, 2007 Mediterranean Conference on Control & Automation.
[34] Olivier Gibaru,et al. Parameters estimation of a noisy sinusoidal signal with time-varying amplitude , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).
[35] Eric Wai Ming Lee,et al. FRACTIONAL VARIATIONAL ITERATION METHOD AND ITS APPLICATION , 2010 .
[36] M. Mboup,et al. An algebraic method for multi-dimensional derivative estimation , 2008, 2008 16th Mediterranean Conference on Control and Automation.
[37] Guy Jumarie,et al. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions , 2009, Appl. Math. Lett..
[38] Ji-Huan He,et al. A SHORT REMARK ON FRACTIONAL VARIATIONAL ITERATION METHOD , 2011 .
[39] M. Fliess,et al. Sur les systèmes linéaires à dérivation non entière , 1997 .
[40] Cédric Join,et al. Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.
[41] Yangquan Chen,et al. Digital Fractional Order Savitzky-Golay Differentiator , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.
[42] M.. A Course of Pure Mathematics , 1909, Nature.
[43] Jean-Pierre Richard,et al. Multivariate numerical differentiation , 2011, J. Comput. Appl. Math..
[44] M. Fliess,et al. An algebraic receiver for full response CPM demodulation , 2006, 2006 International Telecommunications Symposium.
[45] Eric S. Lander,et al. AN ALGEBRAIC APPROACH , 1983 .
[46] M. Fliess,et al. An algebraic framework for linear identification , 2003 .