wsclean: an implementation of a fast, generic wide-field imager for radio astronomy

Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-stacking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASA's w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.

[1]  Alan E. E. Rogers,et al.  Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.

[2]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[3]  S. Bhatnagar,et al.  Applying full polarization A-Projection to very wide field of view instruments: An imager for LOFAR , 2012, 1212.6178.

[4]  John W. Romein,et al.  An efficient work-distribution strategy for gridding radio-telescope data on GPUs , 2012, ICS '12.

[5]  Andrew Hopkins,et al.  Compact continuum source finding for next generation radio surveys , 2012, 1202.4500.

[6]  S. Zaroubi,et al.  Post-correlation filtering techniques for off-axis source and RFI removal , 2012, 1201.5564.

[7]  J. Roerdink,et al.  A morphological algorithm for improving radio-frequency interference detection , 2012, 1201.3364.

[8]  M. C. Toribio,et al.  LOFAR: The LOw-Frequency ARray , 2013, 1305.3550.

[9]  D. J. Saikia,et al.  EMU: Evolutionary Map of the Universe , 2011, Publications of the Astronomical Society of Australia.

[10]  T. Cornwell,et al.  A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry , 2011, 1106.2745.

[11]  O. Smirnov Revisiting the radio interferometer measurement equation. I. A full-sky Jones formalism , 2011, 1101.1764.

[12]  B. Pindor,et al.  Subtraction of Bright Point Sources from Synthesis Images of the Epoch of Reionization , 2010, Publications of the Astronomical Society of Australia.

[13]  G. Bernardi,et al.  Subtraction of point sources from interferometric radio images through an algebraic forward modelling scheme , 2010, 1012.3719.

[14]  W. A. Coles,et al.  Interferometric Imaging with the 32 Element Murchison Wide-Field Array , 2010, 1010.1733.

[15]  Michael Biehl,et al.  Post‐correlation radio frequency interference classification methods , 2010, 1002.1957.

[16]  Christopher L. Williams,et al.  The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.

[17]  Jan Noordam,et al.  Radio Interferometric Calibration Using The SAGE Algorithm , 2008, DSP 2009.

[18]  Stefan Jaeger,et al.  The Common Astronomy Software Application (CASA) , 2008 .

[19]  Tim J. Cornwell,et al.  The Noncoplanar Baselines Effect in Radio Interferometry: The W-Projection Algorithm , 2008, IEEE Journal of Selected Topics in Signal Processing.

[20]  Roger J. Cappallo,et al.  Real-Time Calibration of the Murchison Widefield Array , 2008, IEEE Journal of Selected Topics in Signal Processing.

[21]  Tim J. Cornwell,et al.  Multiscale CLEAN Deconvolution of Radio Synthesis Images , 2008, IEEE Journal of Selected Topics in Signal Processing.

[22]  J. Usón,et al.  Correcting direction-dependent gains in the deconvolution of radio interferometric images , 2008, 0805.0834.

[23]  K. Golap,et al.  CASA Architecture and Applications , 2007 .

[24]  Philip J. Bones,et al.  Image Reconstruction from Incomplete Data V , 2006 .

[25]  R. Perley,et al.  The VLA Low-Frequency Sky Survey , 2005, 0706.1191.

[26]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[27]  Mark R. Calabretta,et al.  Representations of world coordinates in FITS , 2002, astro-ph/0207407.

[28]  Richard P. Gooch,et al.  Karma: a Visualization Test-Bed , 1996 .

[29]  E. Greisen,et al.  Representations of celestial coordinates in FITS , 2002, astro-ph/0207413.

[30]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[31]  F. Schwab,et al.  Relaxing the isoplanatism assumption in self-calibration; applications to low-frequency radio interferometry , 1984 .

[32]  Optimal Gridding of Visibility Data in Radio Interferometry , 1984 .