Current state-of-the-art molecular dynamics methods and applications.

Molecular dynamics simulations are used to describe the patterns, strength, and properties of protein behavior, drug-receptor interactions, the solvation of molecules, the conformational changes that a protein or molecule may undergo under various conditions, and other events that require the systematic evaluation of molecular properties in dynamic molecular systems. Only few years ago proteins were considered to be rigid body structures with very limited conformational flexibility. However, it is now clear that proteins are highly dynamic structures, the internal organization of which is the key to their 3D spatial arrangement and hence biological function. The study of protein dynamics in the lab is a very complicated, expensive, and time-consuming process. Therefore, a lot of effort and hope lies with the computers and the in silico study of protein structure and molecular dynamics. Herein, an effort has been made to describe the ever-evolving field of molecular dynamics, the different algorithms, and force fields that are being used as well as to provide some insight on what the near future holds for this auspicious field of computational structural biology.

[1]  M Karplus,et al.  The dynamics of proteins. , 1986, Scientific American.

[2]  David Beeman,et al.  Some Multistep Methods for Use in Molecular Dynamics Calculations , 1976 .

[3]  A. Voter Parallel replica method for dynamics of infrequent events , 1998 .

[4]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[5]  Observation of an A-DNA to B-DNA transition in a nonhelical nucleic acid hairpin molecule using molecular dynamics. , 1997, Biophysical journal.

[6]  L. Chong,et al.  Reaching biological timescales with all-atom molecular dynamics simulations. , 2010, Current opinion in pharmacology.

[7]  M. Courty,et al.  Glycosylation mediated-BAIL in aqueous solution. , 2013, Carbohydrate research.

[8]  Jenn-Huei Lii,et al.  The MM3 force field for amides, polypeptides and proteins , 1991 .

[9]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[10]  P. Kollman,et al.  Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .

[11]  Allan Gottlieb,et al.  Highly parallel computing , 1989, Benjamin/Cummings Series in computer science and engineering.

[12]  A. Strey,et al.  High Performance Computing , 2001 .

[13]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[14]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[15]  R W Hockney,et al.  Particle-Particle-Particle-Mesh (P3m) Algorithms , 1988 .

[16]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[17]  Henri Moereels,et al.  Structure of HIV-1 RT/TIBO R 86183 complex reveals similarity in the binding of diverse nonnucleoside inhibitors , 1995, Nature Structural Biology.

[18]  Robert Schleif Modeling and Studying Proteins with Molecular Dynamics , 2004, Numerical Computer Methods, Part D.

[19]  A. Voter Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events , 1997 .

[20]  A. Voter,et al.  Temperature-accelerated dynamics for simulation of infrequent events , 2000 .

[21]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[22]  M. Bhide,et al.  An insight into the ligand-receptor interactions involved in the translocation of pathogens across blood-brain barrier. , 2011, FEMS immunology and medical microbiology.

[23]  P A Kollman,et al.  Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. , 1996, Journal of molecular biology.

[24]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[25]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[26]  E. Hairer,et al.  Geometric numerical integration illustrated by the Störmer–Verlet method , 2003, Acta Numerica.

[27]  Enrico Clementi,et al.  Molecular dynamics simulation of flow past a plate , 1986 .

[28]  John L. Gustafson,et al.  Reevaluating Amdahl's law , 1988, CACM.

[29]  F. J. Luque,et al.  The structure and dynamics of DNA in the gas phase. , 2003, Journal of the American Chemical Society.

[30]  A. Leach Molecular Modelling: Principles and Applications , 1996 .

[31]  C DeLisi,et al.  Computers in molecular biology: current applications and emerging trends. , 1988, Science.

[32]  W. G. Hoover molecular dynamics , 1986, Catalysis from A to Z.

[33]  Austin B. Yongye,et al.  Extension of the GLYCAM06 biomolecular force field to lipids, lipid bilayers and glycolipids , 2008, Molecular simulation.

[34]  D. Tildesley,et al.  Multiple time-step methods in molecular dynamics , 1978 .

[35]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[36]  Wilfred F. van Gunsteren,et al.  An improved OPLS–AA force field for carbohydrates , 2002, J. Comput. Chem..

[37]  R. Dror,et al.  Long-timescale molecular dynamics simulations of protein structure and function. , 2009, Current opinion in structural biology.

[38]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[39]  D. Tieleman,et al.  Force fields for classical molecular dynamics. , 2013, Methods in molecular biology.

[40]  A. Laio,et al.  Simulation of structural phase transitions by metadynamics , 2004, cond-mat/0411559.

[41]  P A Kollman,et al.  Prediction of the binding free energies of new TIBO-like HIV-1 reverse transcriptase inhibitors using a combination of PROFEC, PB/SA, CMC/MD, and free energy calculations. , 1999, Journal of medicinal chemistry.

[42]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[43]  J. Andrew McCammon,et al.  Molecular dynamics of cryptophane and its complexes with tetramethylammonium and neopentane using a continuum solvent model , 1999 .

[44]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[45]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[46]  M Karplus,et al.  Solvent effects on protein motion and protein effects on solvent motion. Dynamics of the active site region of lysozyme. , 1989, Journal of molecular biology.

[47]  Kjeld Rasmussen,et al.  The Consistent Force Field. 5. PEF95SAC: Optimized potential energy function for alcohols and carbohydrates , 1997 .

[48]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[49]  W. V. van Gunsteren,et al.  An efficient mean solvation force model for use in molecular dynamics simulations of proteins in aqueous solution. , 1996, Journal of molecular biology.

[50]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[51]  G. Chiarotti,et al.  Physics of iron at Earth's core conditions , 2000, Science.

[52]  T Darden,et al.  New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. , 1999, Structure.

[53]  Salvatore Cannistraro,et al.  Molecular Dynamics of Water at the Protein-Solvent Interface , 2002 .

[54]  T. Muramatsu Protein-bound carbohydrates on cell-surface as targets of recognition: An Odyssey in understanding them , 2000, Glycoconjugate Journal.

[55]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[56]  R. Cramer,et al.  Validation of the general purpose tripos 5.2 force field , 1989 .

[57]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[58]  Karl N. Kirschner,et al.  Solvent interactions determine carbohydrate conformation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[60]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[61]  Norman L. Allinger,et al.  Conformational analysis—CI , 1974 .

[62]  G. Matthews,et al.  Molecular dynamics simulator , 1993 .

[63]  Susanna Hug,et al.  Classical molecular dynamics in a nutshell. , 2013, Methods in molecular biology.

[64]  Jacob D. Durrant,et al.  Molecular dynamics simulations and drug discovery , 2011, BMC Biology.

[65]  Charles Bender,et al.  Molecular mechanics (MM2) calculations on peptides and on the protein Crambin using the CYBER 205 , 1989 .

[66]  Kjeld Rasmussen,et al.  A comparison and chemometric analysis of several molecular mechanics force fields and parameter sets applied to carbohydrates , 1998 .

[67]  Alexander D. MacKerell,et al.  Comparison of protein force fields for molecular dynamics simulations. , 2008, Methods in molecular biology.

[68]  Ruslan L. Davidchack Discretization errors in molecular dynamics simulations with deterministic and stochastic thermostats , 2010, J. Comput. Phys..

[69]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[70]  Ming-Jing Hwang,et al.  Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules , 1994, J. Comput. Chem..

[71]  P. Kollman,et al.  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000 .

[72]  William D. Mattson,et al.  Near-neighbor calculations using a modified cell-linked list method , 1999 .

[73]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[74]  O. Anderson Physics of iron , 1993 .

[75]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[76]  Susan Budavari,et al.  The Merck index , 1998 .

[77]  R Elber,et al.  Novel methods for molecular dynamics simulations. , 1996, Current opinion in structural biology.

[78]  Wei Zhang,et al.  A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations , 2003, J. Comput. Chem..

[79]  Sharon L. A. Munro,et al.  Comparative review of molecular modelling software for personal computers , 1988, J. Comput. Aided Mol. Des..

[80]  K M Merz,et al.  GB/SA water model for the Merck molecular force field (MMFF). , 2000, Journal of molecular graphics & modelling.

[81]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[82]  I D Campbell,et al.  The effects of variable glycosylation on the functional activities of ribonuclease, plasminogen and tissue plasminogen activator. , 1995, Biochimica et biophysica acta.

[83]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[84]  Sophia Kossida,et al.  A holistic evolutionary and structural study of flaviviridae provides insights into the function and inhibition of HCV helicase , 2013, PeerJ.

[85]  E. Tajkhorshid,et al.  Exploring transmembrane diffusion pathways with molecular dynamics. , 2010, Physiology.

[86]  Mark E. Tuckerman,et al.  Molecular dynamics algorithm for multiple time scales: Systems with long range forces , 1991 .

[87]  D. Frenkel,et al.  Molecular dynamics simulations. , 2002, Current opinion in structural biology.

[88]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .