Visual tracking via geometric particle filtering on the affine group with optimal importance functions

We propose a geometric method for visual tracking, in which the 2-D affine motion of a given object template is estimated in a video sequence by means of coordinate-invariant particle filtering on the 2-D affine group Aff(2). Tracking performance is further enhanced through a geometrically defined optimal importance function, obtained explicitly via Taylor expansion of a principal component analysis based measurement function on Aff(2). The efficiency of our approach to tracking is demonstrated via comparative experiments.

[1]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[3]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[4]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[5]  Stefano Soatto,et al.  Monte Carlo filtering on Lie groups , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[6]  Anuj Srivastava,et al.  Bayesian filtering for tracking pose and location of rigid targets , 2000, SPIE Defense + Commercial Sensing.

[7]  Yong Rui,et al.  Better proposal distributions: object tracking using unscented particle filter , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[8]  Robert E. Mahony,et al.  The Geometry of the Newton Method on Non-Compact Lie Groups , 2002, J. Glob. Optim..

[9]  U. Grenander,et al.  Jump–diffusion Markov processes on orthogonal groups for object pose estimation , 2002 .

[10]  Peihua Li,et al.  Visual contour tracking based on particle filters , 2003, Image Vis. Comput..

[11]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[12]  Frank Dellaert,et al.  A Rao-Blackwellized particle filter for EigenTracking , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[14]  B. Hall Lie Groups, Lie Algebras, and Representations: An Elementary Introduction , 2004 .

[15]  Rama Chellappa,et al.  Visual tracking and recognition using appearance-adaptive models in particle filters , 2004, IEEE Transactions on Image Processing.

[16]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[17]  Anton van den Hengel,et al.  Enhanced Importance Sampling: Unscented Auxiliary Particle Filtering for Visual Tracking , 2004, Australian Conference on Artificial Intelligence.

[18]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[19]  M. Shah,et al.  Object tracking: A survey , 2006, CSUR.

[20]  Gregory S. Chirikjian,et al.  Error propagation on the Euclidean group with applications to manipulator kinematics , 2006, IEEE Transactions on Robotics.

[21]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[22]  Xiaoqin Zhang,et al.  Robust Visual Tracking Based on Incremental Tensor Subspace Learning , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[23]  Nicholas Ayache,et al.  Insight into Efficient Image Registration Techniques and the Demons Algorithm , 2007, IPMI.

[24]  Frank Chongwoo Park,et al.  Particle Filtering on the Euclidean Group , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[25]  Frank Chongwoo Park,et al.  Visual Tracking via Particle Filtering on the Affine Group , 2008, 2008 International Conference on Information and Automation.