Liouville-type results for semilinear elliptic equations in unbounded domains
暂无分享,去创建一个
[1] H. Berestycki,et al. Some applications of the method of super and subsolutions , 1980 .
[2] M. Schatzman,et al. Bifurcation and Nonlinear Eigenvalue Problems , 1980 .
[3] R. Pinsky. ON THE CONSTRUCTION AND SUPPORT PROPERTIES OF MEASURE-VALUED DIFFUSIONS ON D ⊆ R d WITH SPATIALLY DEPENDENT BRANCHING , 2001 .
[4] Andreas E. Kyprianou,et al. Local extinction versus local exponential growth for spatial branching processes , 2004 .
[5] H. Weinberger,et al. Maximum principles in differential equations , 1967 .
[6] Henri Berestycki,et al. Le nombre de solutions de certains problèmes semi-linéaires elliptiques , 1981 .
[7] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[8] François Hamel,et al. The speed of propagation for KPP type problems. I: Periodic framework , 2005 .
[9] Henri Berestycki,et al. Travelling fronts in cylinders , 1992 .
[10] Henri Berestycki,et al. Analysis of the periodically fragmented environment model : I – Species persistence , 2005, Journal of mathematical biology.
[11] S. Varadhan,et al. The principal eigenvalue and maximum principle for second‐order elliptic operators in general domains , 1994 .
[12] R. Pinsky. TRANSIENCE, RECURRENCE AND LOCAL EXTINCTION PROPERTIES OF THE SUPPORT FOR SUPERCRITICAL FINITE MEASURE-VALUED DIFFUSIONS' , 1996 .
[13] Henri Berestycki,et al. Analysis of the periodically fragmented environment model : I - Influence of periodic heterogeneous environment on species persistence. , 2005 .
[14] S Bochner,et al. A NEW APPROACH TO ALMOST PERIODICITY. , 1962, Proceedings of the National Academy of Sciences of the United States of America.
[15] R. Pinsky,et al. On the Construction and Support Properties of Measure-Valued Diffusions on $D \subseteq \mathbb{R}^d$ with Spatially Dependent Branching , 1999 .