Kernel-based semi-supervised learning for novelty detection
暂无分享,去创建一个
Trung Le | Van Nguyen | Mi Dinh | Thai Hoang Le | Thien Pham | Trung Le | Van Nguyen | T. Le | Mi Dinh | Thien Pham
[1] S. Sathiya Keerthi,et al. Deterministic annealing for semi-supervised kernel machines , 2006, ICML.
[2] Dae-Won Kim,et al. Density-Induced Support Vector Data Description , 2007, IEEE Transactions on Neural Networks.
[3] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[4] Robert P. W. Duin,et al. Support vector domain description , 1999, Pattern Recognit. Lett..
[5] Ayhan Demiriz,et al. Semi-Supervised Support Vector Machines , 1998, NIPS.
[6] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[7] Dale Schuurmans,et al. Maximum Margin Clustering , 2004, NIPS.
[8] Thorsten Joachims,et al. Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.
[9] Bernhard Schölkopf,et al. Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.
[10] O. Mangasarian,et al. Semi-Supervised Support Vector Machines for Unlabeled Data Classification , 2001 .
[11] Jason Weston,et al. Large Scale Transductive SVMs , 2006, J. Mach. Learn. Res..
[12] Alexander Zien,et al. A continuation method for semi-supervised SVMs , 2006, ICML.
[13] Alexander Zien,et al. Semi-Supervised Classification by Low Density Separation , 2005, AISTATS.
[14] Tijl De Bie,et al. Semi-Supervised Learning Using Semi-Definite Programming , 2006, Semi-Supervised Learning.
[15] S. Sathiya Keerthi,et al. Optimization Techniques for Semi-Supervised Support Vector Machines , 2008, J. Mach. Learn. Res..