Protein modification via alkyne hydrosilylation using a substoichiometric amount of ruthenium(ii) catalyst† †Dedicated to Professor Stuart L. Schreiber on the occasion of his 60th birthday. ‡ ‡Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05313k Click here for additional

The development of site-specific modification of alkyne-functionalized proteins using dimethylarylsilanes and substoichiometric or low-loading of Ru(ii) catalysts is reported. Furthermore, the resultant gem-vinylsilane can undergo further targeted chemical modifications, highlighting its potential for single-site, dual-modification applications.

[1]  Jennifer A. Prescher,et al.  Orthogonal bioorthogonal chemistries. , 2015, Current opinion in chemical biology.

[2]  Emmanuel Baslé,et al.  Protein chemical modification on endogenous amino acids. , 2010, Chemistry & biology.

[3]  D. Rideout Self-assembling cytotoxins. , 1986, Science.

[4]  J. Stohrer,et al.  Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view , 2011 .

[5]  Jennifer A. Prescher,et al.  Chemistry in living systems , 2005, Nature chemical biology.

[6]  Gonçalo J L Bernardes,et al.  Advances in chemical protein modification. , 2015, Chemical reviews.

[7]  Alexander M. Spokoyny,et al.  Organometallic Palladium Reagents for Cysteine Bioconjugation , 2015, Nature.

[8]  B. G. Davis,et al.  Rapid Cross-Metathesis for Reversible Protein Modifications via Chemical Access to Se-Allyl-selenocysteine in Proteins , 2013, Journal of the American Chemical Society.

[9]  Gonçalo J. L. Bernardes,et al.  CORM-3 reactivity toward proteins: the crystal structure of a Ru(II) dicarbonyl-lysozyme complex. , 2011, Journal of the American Chemical Society.

[10]  Ana C. Coelho,et al.  Spontaneous CO Release from RuII(CO)2–Protein Complexes in Aqueous Solution, Cells, and Mice , 2014, Angewandte Chemie.

[11]  Carolyn R Bertozzi,et al.  Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. , 2009, Angewandte Chemie.

[12]  Peng R. Chen,et al.  Genetically encoded alkenyl–pyrrolysine analogues for thiol–ene reaction mediated site-specific protein labeling , 2012 .

[13]  K. Griesbaum Problems and Possibilities of the Free‐Radical Addition of Thiols to Unsaturated Compounds , 1970 .

[14]  L. Dobrucki,et al.  Bioorthogonal oxime ligation mediated in vivo cancer targeting , 2015, Chemical science.

[15]  E. Meggers,et al.  Metal complex catalysis in living biological systems. , 2013, Chemical communications.

[16]  M. Francis,et al.  Development of oxidative coupling strategies for site-selective protein modification. , 2015, Accounts of chemical research.

[17]  Christopher D. Spicer,et al.  Palladium-mediated cell-surface labeling. , 2012, Journal of the American Chemical Society.

[18]  D. Spring,et al.  Palladium-catalysed cross-coupling of organosilicon reagents. , 2012, Chemical Society reviews.

[19]  Christopher N Bowman,et al.  Thiol-ene click chemistry. , 2010, Angewandte Chemie.

[20]  C. Kuehne,et al.  Orthogonal dual-modification of proteins for the engineering of multivalent protein scaffolds , 2015, Beilstein journal of organic chemistry.

[21]  J. Chin,et al.  Concerted, Rapid, Quantitative, and Site-Specific Dual Labeling of Proteins , 2014, Journal of the American Chemical Society.

[22]  B. G. Davis,et al.  A "tag-and-modify" approach to site-selective protein modification. , 2011, Accounts of chemical research.

[23]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[24]  C. Bertozzi,et al.  Site-Specific Antibody–Drug Conjugates: The Nexus of Bioorthogonal Chemistry, Protein Engineering, and Drug Development , 2014, Bioconjugate chemistry.

[25]  Y. Morizawa,et al.  Cleavage of silicon-vinyl carbon bond by nBu4NF , 1983 .

[26]  A. Merlino,et al.  Ruthenium metalation of proteins: the X-ray structure of the complex formed between NAMI-A and hen egg white lysozyme. , 2014, Dalton transactions.

[27]  Nikolaus Krall,et al.  Site-selective protein-modification chemistry for basic biology and drug development. , 2016, Nature chemistry.

[28]  Jennifer A. Prescher,et al.  Finding the right (bioorthogonal) chemistry. , 2014, ACS chemical biology.

[29]  S. Gerstberger,et al.  Methods for converting cysteine to dehydroalanine on peptides and proteins , 2011 .

[30]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[31]  Peng R. Chen,et al.  Transition metal-mediated bioorthogonal protein chemistry in living cells. , 2014, Chemical Society reviews.

[32]  J. Chin,et al.  Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.

[33]  K. Niikura,et al.  Control of bacteria adhesion by cell-wall engineering. , 2004, Journal of the American Chemical Society.

[34]  S. Jaffrey,et al.  RNA Mimics of Green Fluorescent Protein , 2011, Science.

[35]  M. Distefano,et al.  Simultaneous dual protein labeling using a triorthogonal reagent. , 2013, Journal of the American Chemical Society.

[36]  D. Spring,et al.  Palladium-catalysed cross-coupling of vinyldisiloxanes with benzylic and allylic halides and sulfonates. , 2012, Chemistry.

[37]  I. Carrico Chemoselective modification of proteins: hitting the target. , 2008, Chemical Society reviews.

[38]  Rahimi M. Yusop,et al.  Palladium-mediated intracellular chemistry. , 2011, Nature chemistry.

[39]  C. Bertozzi,et al.  Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. , 1997, Science.

[40]  Peng R. Chen,et al.  Ligand-free palladium-mediated site-specific protein labeling inside gram-negative bacterial pathogens. , 2013, Journal of the American Chemical Society.

[41]  B. G. Davis,et al.  Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. , 2008, Journal of the American Chemical Society.

[42]  S. V. van Kasteren,et al.  Chemical approaches to mapping the function of post‐translational modifications , 2008, The FEBS journal.

[43]  H. Overkleeft,et al.  Triple bioorthogonal ligation strategy for simultaneous labeling of multiple enzymatic activities. , 2012, Angewandte Chemie.

[44]  B. Trost,et al.  Markovnikov alkyne hydrosilylation catalyzed by ruthenium complexes. , 2001, Journal of the American Chemical Society.

[45]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[46]  B. G. Davis,et al.  Enabling olefin metathesis on proteins: chemical methods for installation of S-allyl cysteine. , 2009, Chemical communications.

[47]  Reyna K. V. Lim,et al.  Bioorthogonal chemistry: recent progress and future directions. , 2010, Chemical communications.

[48]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[49]  T. Terwilliger,et al.  Engineering and characterization of a superfolder green fluorescent protein , 2006, Nature Biotechnology.

[50]  B. G. Davis,et al.  A convenient catalyst for aqueous and protein Suzuki-Miyaura cross-coupling. , 2009, Journal of the American Chemical Society.

[51]  B. Trost,et al.  Alkyne hydrosilylation catalyzed by a cationic ruthenium complex: efficient and general trans addition. , 2005, Journal of the American Chemical Society.

[52]  B. G. Davis,et al.  Olefin cross-metathesis on proteins: investigation of allylic chalcogen effects and guiding principles in metathesis partner selection. , 2010, Journal of the American Chemical Society.

[53]  M. Francis,et al.  Transition metal catalyzed methods for site-selective protein modification. , 2006, Current opinion in chemical biology.

[54]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[55]  Markus Grammel,et al.  Chemical reporters for biological discovery. , 2013, Nature chemical biology.