Phase transition and gravitational wave phenomenology of scalar conformal extensions of the Standard Model

[1]  F. Huang,et al.  Probing the gauge symmetry breaking of the early universe in 3-3-1 models and beyond by gravitational waves , 2017, Physics Letters B.

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  K. Tsumura,et al.  Gravitational wave from dark sector with dark pion , 2017, 1704.00219.

[4]  C. Lagger,et al.  Gravitational waves from a supercooled electroweak phase transition and their detection with pulsar timing arrays , 2017, 1703.06552.

[5]  J. Wells,et al.  Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology , 2017, Journal of High Energy Physics.

[6]  M. White,et al.  Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis , 2017, Journal of High Energy Physics.

[7]  J. Shu,et al.  Gravitational wave signals of electroweak phase transition triggered by dark matter , 2017, 1702.02698.

[8]  Iason Baldes Gravitational waves from the asymmetric-dark-matter generating phase transition , 2017, 1702.02117.

[9]  M. Sullivan,et al.  Benchmarks for Double Higgs Production in the Singlet Extended Standard Model at the LHC , 2017, 1701.08774.

[10]  A. Tofighi,et al.  Strong Electroweak Phase Transition in a Model with Extended Scalar Sector , 2017, 1701.02074.

[11]  A. Mégevand,et al.  Bubble nucleation and growth in very strong cosmological phase transitions , 2016, 1611.05853.

[12]  A. Fowlie,et al.  Gravitational waves at aLIGO and vacuum stability with a scalar singlet extension of the standard model , 2016, 1611.01617.

[13]  M. Raidal,et al.  The evolving Planck mass in classically scale-invariant theories , 2016, 1610.06571.

[14]  M. Kakizaki,et al.  Gravitational waves and Higgs boson couplings for exploring first order phase transition in the model with a singlet scalar field , 2016, 1609.00297.

[15]  M. Raidal,et al.  Super-heavy dark matter – Towards predictive scenarios from inflation , 2016, 1605.09378.

[16]  M. Takimoto,et al.  Probing a classically conformal B-L model with gravitational waves , 2016, 1604.05035.

[17]  S. Huber,et al.  A second Higgs doublet in the early universe: baryogenesis and gravitational waves , 2016, 1611.05874.

[18]  V. Vaskonen,et al.  Electroweak baryogenesis and gravitational waves from a real scalar singlet , 2016, 1611.02073.

[19]  M. Yamada,et al.  Scale genesis and gravitational wave in a classically scale invariant extension of the standard model , 2016, 1610.02241.

[20]  Lian-tao Wang,et al.  Probing the Electroweak Phase Transition with Higgs Factories and Gravitational Waves , 2016, 1608.06619.

[21]  A. Katz,et al.  Baryogenesis and gravitational waves from runaway bubble collisions , 2016, 1608.00583.

[22]  K. Tamvakis,et al.  Dark matter from a classically scale-invariant S U ( 3 ) X , 2016, 1607.01001.

[23]  L. Marzola,et al.  Minimal but non-minimal inflation and electroweak symmetry breaking , 2016, 1606.06887.

[24]  M. Laine,et al.  Basics of Thermal Field Theory: A Tutorial on Perturbative Computations , 2016 .

[25]  W. Bizoń,et al.  NNLOPS accurate associated HW production , 2016, Journal of High Energy Physics.

[26]  M. Chala,et al.  Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures , 2016, 1605.08663.

[27]  B. A. Boom,et al.  GW150914: Implications for the stochastic gravitational wave background from binary black holes , 2016 .

[28]  A. Mazumdar,et al.  Probing the scale of new physics by Advanced LIGO/VIRGO , 2016, 1602.04203.

[29]  M. Spannowsky,et al.  Hearing the signal of dark sectors with gravitational wave detectors , 2016, 1602.03901.

[30]  Yi-Fu Cai,et al.  Probing the nature of the electroweak phase transition from particle colliders to gravitational wave detectors , 2016 .

[31]  Yi-Fu Cai,et al.  Hearing the echoes of electroweak baryogenesis with gravitational wave detectors , 2016, 1601.01640.

[32]  A. Mégevand,et al.  Gravitational waves from a very strong electroweak phase transition , 2015, 1512.08962.

[33]  M. Takimoto,et al.  Gravitational waves from the first order phase transition of the Higgs field at high energy scales , 2015, 1510.02697.

[34]  M. Raidal,et al.  Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly , 2015, 1512.09136.

[35]  S. Huber,et al.  Detectable gravitational waves from very strong phase transitions in the general NMSSM , 2015, 1512.06357.

[36]  Antoine Petiteau,et al.  Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions , 2015, 1512.06239.

[37]  R. Mann,et al.  Conformal complex singlet extension of the Standard Model: scenario for dark matter and a second Higgs boson , 2015, 1510.04321.

[38]  M. Kakizaki,et al.  Gravitational waves as a probe of extended scalar sectors with the first order electroweak phase transition , 2015, 1509.08394.

[39]  M. Raidal,et al.  Linear inflation from quartic potential , 2015, 1509.05423.

[40]  K. Tamvakis,et al.  Dark matter and neutrino masses from a scale-invariant multi-Higgs portal , 2015, 1508.03031.

[41]  E. Senaha,et al.  Sphaleron and critical bubble in the scale invariant two Higgs doublet model , 2015 .

[42]  Francesco Sannino,et al.  First Order Electroweak Phase Transition from (Non)Conformal Extensions of the Standard Model , 2015, 1505.05872.

[43]  P. Schwaller Gravitational Waves from a Dark Phase Transition. , 2015, Physical review letters.

[44]  M. Raidal,et al.  Dynamically induced Planck scale and inflation , 2015, Journal of High Energy Physics.

[45]  C. Hill,et al.  An ultra-weak sector, the strong CP problem and the pseudo-Goldstone dilaton , 2014, 1409.4029.

[46]  K. Tuominen,et al.  Strong phase transition, dark matter and vacuum stability from simple hidden sectors , 2014, 1407.0688.

[47]  G. Servant Baryogenesis from strong CP violation and the QCD axion. , 2014, Physical review letters.

[48]  M. Raidal,et al.  Embedding inflation into the Standard Model — More evidence for classical scale invariance , 2014, 1405.3987.

[49]  C. Hill,et al.  Ultra-weak sector, Higgs boson mass, and the dilaton , 2014, 1404.6268.

[50]  M. Raidal,et al.  Towards Completing the Standard Model: Vacuum Stability, EWSB and Dark Matter , 2013, 1309.6632.

[51]  K. Tuominen,et al.  Physical Naturalness and Dynamical Breaking of Classical Scale Invariance , 2013, 1304.7006.

[52]  V. Khoze Inflation and dark matter in the Higgs portal of classically scale invariant Standard Model , 2013, 1308.6338.

[53]  Hong-jian He,et al.  Natural electroweak symmetry breaking from scale invariant Higgs mechanism , 2013, 1308.0295.

[54]  A. Strumia,et al.  Dynamical generation of the weak and Dark Matter scale , 2013, 1306.2329.

[55]  Ryszard S. Romaniuk,et al.  Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012 .

[56]  N. Okada,et al.  Dark matter in the classically conformal B-L model , 2012, 1202.1405.

[57]  Koji Ishiwata Dark Matter in Classically Scale-Invariant Two Singlets Standard Model , 2011, 1112.2696.

[58]  W. Marsden I and J , 2012 .

[59]  G. Servant,et al.  Natural cold baryogenesis from strongly interacting electroweak symmetry breaking , 2011, 1104.4793.

[60]  G. Servant,et al.  Cosmological consequences of nearly conformal dynamics at the TeV scale , 2011, 1104.4791.

[61]  J. No Large Gravitational Wave Background Signals in Electroweak Baryogenesis Scenarios , 2011, 1103.2159.

[62]  R. Foot,et al.  Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model , 2010, 1006.0131.

[63]  G. Servant,et al.  Energy budget of cosmological first-order phase transitions , 2010, 1004.4187.

[64]  J. Espinosa,et al.  Some cosmological implications of hidden sectors , 2008, 0809.3215.

[65]  J. Espinosa,et al.  Novel Effects in Electroweak Breaking from a Hidden Sector , 2007, hep-ph/0701145.

[66]  Turner,et al.  Gravitational radiation from first-order phase transitions. , 1993, Physical review. D, Particles and fields.

[67]  Andrei Linde Decay of the false vacuum at finite temperature , 1983 .

[68]  Fred Cooper,et al.  Cosmology and broken scale invariance , 1981 .

[69]  E. Weinberg Radiative Corrections as the Origin of Spontaneous Symmetry Breaking , 1973, hep-th/0507214.