Graphene as an atomically thin barrier to Cu diffusion into Si.

The evolution of copper-based interconnects requires the realization of an ultrathin diffusion barrier layer between the Cu interconnect and insulating layers. The present work reports the use of atomically thin layer graphene as a diffusion barrier to Cu metallization. The diffusion barrier performance is investigated by varying the grain size and thickness of the graphene layer; single-layer graphene of average grain size 2 ± 1 μm (denoted small-grain SLG), single-layer graphene of average grain size 10 ± 2 μm (denoted large-grain SLG), and multi-layer graphene (MLG) of thickness 5-10 nm. The thermal stability of these barriers is investigated after annealing Cu/small-grain SLG/Si, Cu/large-grain SLG/Si, and Cu/MLG/Si stacks at different temperatures ranging from 500 to 900 °C. X-ray diffraction, transmission electron microscopy, and time-of-flight secondary ion mass spectroscopy analyses confirm that the small-grain SLG barrier is stable after annealing up to 700 °C and that the large-grain SLG and MLG barriers are stable after annealing at 900 °C for 30 min under a mixed Ar and H2 gas atmosphere. The time-dependent dielectric breakdown (TDDB) test is used to evaluate graphene as a Cu diffusion barrier under real device operating conditions, revealing that both large-grain SLG and MLG have excellent barrier performance, while small-grain SLG fails quickly. Notably, the large-grain SLG acts as a better diffusion barrier than the thicker MLG in the TDDB test, indicating that the grain boundary density of a graphene diffusion barrier is more important than its thickness. The near-zero-thickness SLG serves as a promising Cu diffusion barrier for advanced metallization.

[1]  F. d'Heurle,et al.  Formation of Cu3Si and its catalytic effect on silicon oxidation at room temperature , 1991 .

[2]  Eun Sung Kim,et al.  Synthesis of Large‐Area Graphene Layers on Poly‐Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation , 2009 .

[3]  Lai-Guo Wang,et al.  Improved diffusion barrier performance of Ru/TaN bilayer by N effusion in TaN underlayer , 2012 .

[4]  L. Servant,et al.  In situ probing of interfacial processes in the electrodeposition of copper by confocal Raman microspectroscopy , 1998 .

[5]  M. J. Kim,et al.  Diffusion Studies of Copper on Ruthenium Thin Film A Plateable Copper Diffusion Barrier , 2004 .

[6]  S. Ciraci,et al.  Graphene coatings: An efficient protection from oxidation , 2012, 1203.2580.

[7]  A. M. van der Zande,et al.  Impermeable atomic membranes from graphene sheets. , 2008, Nano letters.

[8]  V. Ramgopal Rao,et al.  Porphyrin Self-Assembled Monolayer as a Copper Diffusion Barrier for Advanced CMOS Technologies , 2012, IEEE Transactions on Electron Devices.

[9]  Huiqin Ling,et al.  Diffusion barrier performances of thin Mo, Mo-N and Mo/Mo-N films between Cu and Si , 2005 .

[10]  N. Kwak,et al.  Bias polarity and frequency effects of Cu-induced dielectric breakdown in damascene Cu interconnects , 2012 .

[11]  J. Faerber,et al.  Behaviour of copper atoms in annealed Cu/SiOx/Si systems , 2000 .

[12]  Karen Maex,et al.  Influence of surface and grain-boundary scattering on the resistivity of copper in reduced dimensions , 2004 .

[13]  Liping Huang,et al.  Low temperature growth of highly nitrogen-doped single crystal graphene arrays by chemical vapor deposition. , 2012, Journal of the American Chemical Society.

[14]  Youzhen Li,et al.  Fabrication and diffusion barrier properties of nanoscale Ta/Ta-N bi-layer , 2009 .

[15]  Seung Jin Chae,et al.  Diffusion mechanism of lithium ion through basal plane of layered graphene. , 2012, Journal of the American Chemical Society.

[16]  Yi Chun Wang,et al.  Robust ultra-thin RuMo alloy film as a seedless Cu diffusion barrier , 2012 .

[17]  D. K. Sadana,et al.  Nondestructive Evaluation of Interfaces in Bonded Silicon‐on‐Insulator Structures Using the Picosecond Ultrasonics Technique , 1999 .

[18]  C. Hierold,et al.  Spatially resolved Raman spectroscopy of single- and few-layer graphene. , 2006, Nano letters.

[19]  Z. Zhong,et al.  Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. , 2010, Nano letters.

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  M. T. Wang,et al.  Barrier Properties of Very Thin Ta and TaN Layers Against Copper Diffusion , 1998 .

[22]  C. Lin,et al.  Copper-Silver Alloy for Advanced Barrierless Metallization , 2009 .

[23]  M. Arnold,et al.  Improving Graphene Diffusion Barriers via Stacking Multiple Layers and Grain Size Engineering , 2013 .

[24]  Graphene bubbles with controllable curvature , 2011, 1108.1701.

[25]  Guanzhong Wang,et al.  Controllable synthesis of submillimeter single-crystal monolayer graphene domains on copper foils by suppressing nucleation. , 2012, Journal of the American Chemical Society.

[26]  Byoung Hun Lee,et al.  Effects of multi-layer graphene capping on Cu interconnects , 2013, Nanotechnology.

[27]  Daniel Josell,et al.  Size-Dependent Resistivity in Nanoscale Interconnects , 2009 .

[28]  J. Susini,et al.  In situ x-ray microscopic observation of the electromigration in passivated Cu interconnects , 2001 .

[29]  Qi Xie,et al.  Superior thermal stability of Ta/TaN bi-layer structure for copper metallization , 2006 .

[30]  Eun Sung Kim,et al.  Probing graphene grain boundaries with optical microscopy , 2012, Nature.

[31]  M. Murakami,et al.  Diffusion barrier property of TaN between Si and Cu , 1996 .

[32]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[33]  Young‐Chang Joo,et al.  Cu Contamination of the nMOSFET in a 3-D Integrated Circuit under Thermal and Electrical Stress , 2012 .

[34]  A. See,et al.  Study of copper silicide retardation effects on copper diffusion in silicon , 2001 .

[35]  Christos G. Takoudis,et al.  OXIDE FILM FORMATION AND OXYGEN ADSORPTION ON COPPER IN AQUEOUS MEDIA AS PROBED BY SURFACE-ENHANCED RAMAN SPECTROSCOPY , 1999 .

[36]  Alain E. Kaloyeros,et al.  ZERO THICKNESS DIFFUSION BARRIERS AND METALLIZATION LINERS FOR NANOSCALE DEVICE APPLICATIONS , 2011 .

[37]  Ki-Bum Kim,et al.  Multilayer diffusion barrier for copper metallization using a thin interlayer metal (M=Ru, Cr, and Zr) between two TiN films , 2003 .

[38]  David P. Norton,et al.  Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects , 2008 .

[39]  Chin-An Chang High‐temperature interaction studies of C/Cu/SiO2/Si and related structures , 1989 .

[40]  Jannik C. Meyer,et al.  The structure of suspended graphene sheets , 2007, Nature.

[41]  S. Kodambaka,et al.  Near room-temperature synthesis of transfer-free graphene films , 2012, Nature Communications.

[42]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[43]  Changchun Zhu,et al.  High temperature stability of Zr-Si-N diffusion barrier in Cu/Si contact system , 2004 .

[44]  G. Flynn,et al.  Atmospheric oxygen binding and hole doping in deformed graphene on a SiO₂ substrate. , 2010, Nano letters.

[45]  Jannik C. Meyer,et al.  Mechanical properties of polycrystalline graphene based on a realistic atomistic model , 2012, 1203.4196.

[46]  Atomistic study on the strength of symmetric tilt grain boundaries in graphene , 2012 .

[47]  S. Pei,et al.  Graphene segregated on Ni surfaces and transferred to insulators , 2008, 0804.1778.

[48]  W. L. Liu,et al.  ITO as a Diffusion Barrier Between Si and Cu , 2005 .

[49]  F. d'Heurle,et al.  On the formation of copper-rich copper silicides , 1991 .

[50]  O. Richard,et al.  Bottom‐Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2‐Derived Self‐Assembled Monolayers , 2010 .

[51]  Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects , 2012 .

[52]  Andrew G. Glen,et al.  APPL , 2001 .

[53]  S. Tsukimoto,et al.  Formation of Ti diffusion barrier layers in Thin Cu(Ti) alloy films , 2005 .

[54]  C. Takoudis,et al.  Investigation on the diffusion barrier properties of sputtered Mo∕W–N thin films in Cu interconnects , 2007 .

[55]  Graphene-passivated nickel as an oxidation-resistant electrode for spintronics. , 2014, ACS nano.

[56]  Tadashi Shibata,et al.  Electrical Properties of Giant‐Grain Copper Thin Films Formed by a Low Kinetic Energy Particle Process , 1992 .

[57]  Young‐Chang Joo,et al.  Effects of film thickness and deposition rate on the diffusion barrier performance of titanium nitride in Cu-through silicon vias , 2014, Electronic Materials Letters.

[58]  A. Lösch Nano , 2012, Ortsregister.

[59]  Chin-An Chang,et al.  Formation of copper silicides from Cu(100)/Si(100) and Cu(111)/Si(111) structures , 1990 .

[60]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[61]  Junichi Koike,et al.  Self-forming diffusion barrier layer in Cu–Mn alloy metallization , 2005 .

[62]  F. M. Peeters,et al.  Graphene: A perfect nanoballoon , 2008, 0810.4056.

[63]  Junyong Kang,et al.  Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. , 2011, ACS nano.

[64]  Po-Wen Chiu,et al.  Scalable graphite/copper bishell composite for high-performance interconnects. , 2014, ACS nano.

[65]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.