S-APPROXIMATION SPACES: A FUZZY APPROACH

In this paper, we study the concept of S-approximation spaces in fuzzy set theory and investigate its properties. Along introducing three pairs of lower and upper approximation operators for fuzzy S-approximation spaces, their properties under different assumptions, e.g. monotonicity and weak complement compatibility are studied. By employing two thresholds for minimum acceptance accuracy and maximum rejection error, these spaces are interpreted in three-way decision systems by defining the corresponding positive, negative and boundary regions.

[1]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[2]  Theresa Beaubouef,et al.  Rough Sets , 2019, Lecture Notes in Computer Science.

[3]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[4]  Ali Shakiba,et al.  Neighborhood system S-approximation spaces and applications , 2016, Knowledge and Information Systems.

[5]  Ali Shakiba,et al.  S-approximation Spaces: A Three-way Decision Approach , 2015, Fundam. Informaticae.

[6]  Atul Negi,et al.  A survey of distance/similarity measures for categorical data , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[7]  Yiyu Yao,et al.  Quantitative rough sets based on subsethood measures , 2014, Inf. Sci..

[8]  Ali Shakiba,et al.  S-Approximation: A New Approach to Algebraic Approximation , 2014 .

[9]  Nouman Azam,et al.  Analyzing uncertainties of probabilistic rough set regions with game-theoretic rough sets , 2014, Int. J. Approx. Reason..

[10]  Anna Gomolinska,et al.  Rough Inclusion Functions and Similarity Indices , 2014, CS&P.

[11]  Yufeng Liu,et al.  Fuzzy rough set models over two universes , 2013, Int. J. Mach. Learn. Cybern..

[12]  L. Polkowski Rough Sets: Mathematical Foundations , 2013 .

[13]  Jianguo Zheng,et al.  ROUGH SET OVER DUAL-UNIVERSES IN FUZZY APPROXIMATION SPACE , 2012 .

[14]  Nan Zhang,et al.  Graded rough set model based on two universes and its properties , 2012, Knowl. Based Syst..

[15]  Yiyu Yao,et al.  An Outline of a Theory of Three-Way Decisions , 2012, RSCTC.

[16]  Fei-Yue Wang,et al.  The fourth type of covering-based rough sets , 2012 .

[17]  Bingzhen Sun,et al.  Fuzzy rough set model on two different universes and its application , 2011 .

[18]  Bijan Davvaz,et al.  Approximations in a semigroup by using a neighbourhood system , 2011, Int. J. Comput. Math..

[19]  Faxing Wang,et al.  Variable precision rough set model over two universes and its properties , 2011, Soft Comput..

[20]  Bijan Davvaz,et al.  Generalized lower and upper approximations in a ring , 2010, Inf. Sci..

[21]  Guilong Liu,et al.  Rough set theory based on two universal sets and its applications , 2010, Knowl. Based Syst..

[22]  Wei-Zhi Wu,et al.  On characterization of generalized interval-valued fuzzy rough sets on two universes of discourse , 2009, Int. J. Approx. Reason..

[23]  Anna Gomolinska,et al.  Rough Approximation Based on Weak q-RIFs , 2009, Trans. Rough Sets.

[24]  Yiyu Yao,et al.  Three-Way Decision: An Interpretation of Rules in Rough Set Theory , 2009, RSKT.

[25]  Marie-Jeanne Lesot,et al.  Similarity measures for binary and numerical data: a survey , 2008, Int. J. Knowl. Eng. Soft Data Paradigms.

[26]  Anna Gomolinska,et al.  On Certain Rough Inclusion Functions , 2008, Trans. Rough Sets.

[27]  Tong-Jun Li,et al.  Rough approximation operators on two universes of discourse and their fuzzy extensions , 2008, Fuzzy Sets Syst..

[28]  Yiyu Yao,et al.  Probabilistic rough set approximations , 2008, Int. J. Approx. Reason..

[29]  Bijan Davvaz,et al.  A short note on algebraic T , 2008, Inf. Sci..

[30]  Chris Cornelis,et al.  Fuzzy Rough Sets: from Theory into Practice , 2008, GrC 2008.

[31]  Bijan Davvaz,et al.  Rough approximations in a general approximation space and their fundamental properties , 2008, Int. J. Gen. Syst..

[32]  Bijan Davvaz,et al.  Approximations in n-ary algebraic systems , 2008, Soft Comput..

[33]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[34]  William Zhu,et al.  On Three Types of Covering-Based Rough Sets , 2014, IEEE Transactions on Knowledge and Data Engineering.

[35]  Anna Gomolinska,et al.  Approximation Spaces Based on Relations of Similarity and Dissimilarity of Objects , 2008, Fundam. Informaticae.

[36]  Pawan Lingras,et al.  Survey of Rough and Fuzzy Hybridization , 2007, 2007 IEEE International Fuzzy Systems Conference.

[37]  Xindong Wu,et al.  10 Challenging Problems in Data Mining Research , 2006, Int. J. Inf. Technol. Decis. Mak..

[38]  Fei-Yue Wang,et al.  A New Type of Covering Rough Set , 2006, 2006 3rd International IEEE Conference Intelligent Systems.

[39]  Jon Rigelsford,et al.  Rough Neural Computing: Techniques for Computing with Words , 2004 .

[40]  Zongben Xu,et al.  Rough Set Models on Two universes , 2004, Int. J. Gen. Syst..

[41]  Yiyu Yao,et al.  Probabilistic approaches to rough sets , 2003, Expert Syst. J. Knowl. Eng..

[42]  Wei-Zhi Wu,et al.  Generalized fuzzy rough sets , 2003, Inf. Sci..

[43]  Anna Maria Radzikowska,et al.  A comparative study of fuzzy rough sets , 2002, Fuzzy Sets Syst..

[44]  Wojciech Ziarko,et al.  Probabilistic Decision Tables in the Variable Precision Rough Set Model , 2001, Comput. Intell..

[45]  Daniel Vanderpooten,et al.  A Generalized Definition of Rough Approximations Based on Similarity , 2000, IEEE Trans. Knowl. Data Eng..

[46]  Salvatore Greco,et al.  Rough approximation of a preference relation by dominance relations , 1999, Eur. J. Oper. Res..

[47]  Nehad N. Morsi,et al.  Axiomatics for fuzzy rough sets , 1998, Fuzzy Sets Syst..

[48]  Zdzislaw Pawlak,et al.  Rough Set Theory and its Applications to Data Analysis , 1998, Cybern. Syst..

[49]  Yiyu Yao,et al.  A Comparative Study of Fuzzy Sets and Rough Sets , 1998 .

[50]  Y. Yao,et al.  Generalized Rough Set Models , 1998 .

[51]  Yiyu Yao,et al.  Interpretation of Belief Functions in The Theory of Rough Sets , 1998, Inf. Sci..

[52]  Yiyu Yao Combination of Rough and Fuzzy Sets Based on α-Level Sets , 1997 .

[53]  Wen-Xiu Zhang,et al.  Theory of including degrees and its applications to uncertainty inferences , 1996, Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium.

[54]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[55]  Andrzej Skowron,et al.  Tolerance Approximation Spaces , 1996, Fundam. Informaticae.

[56]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[57]  Yiyu Yao,et al.  Generalization of Rough Sets using Modal Logics , 1996, Intell. Autom. Soft Comput..

[58]  Zdzislaw Pawlak,et al.  VAGUENESS AND UNCERTAINTY: A ROUGH SET PERSPECTIVE , 1995, Comput. Intell..

[59]  Andrzej Skowron,et al.  Rough Mereology , 1994, ISMIS.

[60]  Z. Pawlak,et al.  Rough membership functions , 1994 .

[61]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[62]  Bruce D'Ambrosio,et al.  Proceedings of the Eighth international conference on Uncertainty in artificial intelligence , 1992 .

[63]  Yiyu Yao,et al.  Interval Structure: A Framework for Representing Uncertain Information , 1992, UAI.

[64]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[65]  S. K. Michael Wong,et al.  Rough Sets: Probabilistic versus Deterministic Approach , 1988, Int. J. Man Mach. Stud..

[66]  Jerzy W. Grzymala-Busse,et al.  Knowledge acquisition under uncertainty — a rough set approach , 1988, J. Intell. Robotic Syst..

[67]  A. Nakamura,et al.  Fuzzy rough sets , 1988 .

[68]  Lotfi A. Zadeh,et al.  A Simple View of the Dempster-Shafer Theory of Evidence and Its Implication for the Rule of Combination , 1985, AI Mag..

[69]  L. Zadeh The role of fuzzy logic in the management of uncertainty in expert systems , 1983 .