Integrable non-commutative equations on quad-graphs. The consistency approach
暂无分享,去创建一个
[1] F. Nijhoff,et al. The discrete Korteweg-de Vries equation , 1995 .
[2] Alexander I. Bobenko,et al. Communications in Mathematical Physics Classification of Integrable Equations on Quad-Graphs. The Consistency Approach , 2003 .
[3] F. Nijhoff. Lax pair for the Adler (lattice Krichever–Novikov) system , 2001, nlin/0110027.
[4] Yuri B. Suris,et al. Integrable systems on quad-graphs , 2001, nlin/0110004.
[5] W. Schief. Isothermic Surfaces in Spaces of Arbitrary Dimension: Integrability, Discretization, and Bäcklund Transformations—A Discrete Calapso Equation , 2001 .
[6] R. Kashaev,et al. Strongly Coupled Quantum Discrete Liouville Theory.¶I: Algebraic Approach and Duality , 2000, hep-th/0006156.
[7] I. Gelfand,et al. Nonabelian Integrable Systems, Quasideterminants, and Marchenko Lemma , 1997, q-alg/9707017.
[8] I. Gelfand,et al. Factorization of differential operators, quasideterminants, and nonabelian Toda field equations , 1997, q-alg/9701008.
[9] U. Pinkall,et al. A discrete version of the Darboux transform for isothermic surfaces , 1996, dg-ga/9611009.
[10] D. Krob,et al. Minor identities for quasi-determinants and quantum determinants , 1994, hep-th/9411194.
[11] L. Faddeev,et al. Hirota equation as an example of an integrable symplectic map , 1994, hep-th/9405087.
[12] U. Pinkall,et al. Discrete isothermic surfaces. , 1994 .
[13] H. Capel,et al. Complete integrability of Lagrangian mappings and lattices of KdV type , 1991 .