Curve fitting of time-series Landsat imagery for characterizing a mountain pine beetle infestation

In this technical note we present a new technique using mixed linear models for characterizing a mountain pine beetle (Dendroctonus ponderosae Hopkins) infestation from multiyear satellite imagery. The main benefit of our approach is an ability to determine the statistical significance of each annual spectral change. Knowledge of the annual spectral change characteristics can then be used to statistically determine if a disturbance event has occurred, the timing of a given disturbance event, as well as to provide information for clustering fitted multitemporal reflectance curves (i.e. spectral trajectories) with a common shape. The spatial clustering of spectral trajectories provides insights into the nature of the disturbance and recovery imposed by infestation over a 14-year period.

[1]  Catherine A. Sugar,et al.  Clustering for Sparsely Sampled Functional Data , 2003 .

[2]  F. Vaida,et al.  Conditional Akaike information for mixed-effects models , 2005 .

[3]  Conghe Song,et al.  Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon , 2006 .

[4]  S. R. Searle,et al.  Generalized, Linear, and Mixed Models , 2005 .

[5]  Suming Jin,et al.  Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances , 2005 .

[6]  Warren B. Cohen,et al.  Trajectory-based change detection for automated characterization of forest disturbance dynamics , 2007 .

[7]  Volker C. Radeloff,et al.  Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis: Separating Effects from Determinants , 1999 .

[8]  P. Chavez Image-Based Atmospheric Corrections - Revisited and Improved , 1996 .

[9]  Achim Röder,et al.  Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors. A case study in the Ayora region (eastern Spain) , 2008 .

[10]  D. Bates,et al.  Mixed-Effects Models in S and S-PLUS , 2001 .

[11]  Steven E. Franklin,et al.  Sensitivity of the Landsat enhanced wetness difference index (EWDI) to temporal resolution , 2005 .

[12]  T. Tarpey Linear Transformations and the k-Means Clustering Algorithm , 2007, American Statistician.

[13]  Pol Coppin,et al.  Review ArticleDigital change detection methods in ecosystem monitoring: a review , 2004 .

[14]  J. Mustard,et al.  Green leaf phenology at Landsat resolution: Scaling from the field to the satellite , 2006 .

[15]  Trisalyn A. Nelson,et al.  Large-area mountain pine beetle infestations: Spatial data representation and accuracy , 2006 .

[16]  James O. Ramsay,et al.  Penalized regression with model‐based penalties , 2000 .

[17]  D. Roy,et al.  The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally , 2008 .

[18]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[19]  Bani K. Mallick,et al.  Bayesian Curve Classification Using Wavelets , 2007 .

[20]  M. Gurka Selecting the Best Linear Mixed Model Under REML , 2006 .

[21]  Xuexia Chen,et al.  A simple and effective radiometric correction method to improve landscape change detection across sensors and across time , 2005 .

[22]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[23]  N. Coops,et al.  Estimation of insect infestation dynamics using a temporal sequence of Landsat data , 2008 .

[24]  S. Sader,et al.  Detection of forest harvest type using multiple dates of Landsat TM imagery , 2002 .

[25]  Brian Everitt,et al.  Cluster analysis , 1974 .

[26]  M. Canty,et al.  Automatic radiometric normalization of multitemporal satellite imagery , 2004 .