Magnetoreception through cryptochrome may involve superoxide.

[1]  Thorsten Ritz,et al.  Magnetic compass of birds is based on a molecule with optimal directional sensitivity. , 2009, Biophysical journal.

[2]  E. Getzoff,et al.  Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor. , 2009, Angewandte Chemie.

[3]  W. Greiner,et al.  Iron-mineral-based magnetoreceptor in birds: polarity or inclination compass? , 2009 .

[4]  A. Bacher,et al.  Magnetic-field effect on the photoactivation reaction of Escherichia coli DNA photolyase , 2008, Proceedings of the National Academy of Sciences.

[5]  Danielle E. Chandler,et al.  Exploring the possibilities for radical pair effects in cryptochrome , 2008, Plant signaling & behavior.

[6]  Kira E O'Day Shedding Light on Animal Cryptochromes , 2008, PLoS biology.

[7]  E. Wolf,et al.  Human and Drosophila Cryptochromes Are Light Activated by Flavin Photoreduction in Living Cells , 2008, PLoS biology.

[8]  A. Sancar,et al.  Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. , 2008, Journal of the American Chemical Society.

[9]  Ilya Kuprov,et al.  Chemical compass model of avian magnetoreception , 2008, Nature.

[10]  Sönke Johnsen,et al.  Magnetoreception in animals , 2008 .

[11]  P. Hore,et al.  Role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass. , 2008, Biophysical journal.

[12]  Henrik Mouritsen,et al.  Chemical Magnetoreception: Bird Cryptochrome 1a Is Excited by Blue Light and Forms Long-Lived Radical-Pairs , 2007, PloS one.

[13]  Harald Luksch,et al.  A Visual Pathway Links Brain Structures Active during Magnetic Compass Orientation in Migratory Birds , 2007, PloS one.

[14]  W. Greiner,et al.  Theoretical analysis of an iron mineral-based magnetoreceptor model in birds. , 2007, Biophysical journal.

[15]  R. Bittl,et al.  The Signaling State of Arabidopsis Cryptochrome 2 Contains Flavin Semiquinone* , 2007, Journal of Biological Chemistry.

[16]  Christiane R Timmel,et al.  Determination of radical re-encounter probability distributions from magnetic field effects on reaction yields. , 2007, Journal of the American Chemical Society.

[17]  Danielle E. Chandler,et al.  Magnetic field effects in Arabidopsis thaliana cryptochrome-1. , 2007, Biophysical journal.

[18]  Filip Vandenbussche,et al.  Cryptochrome Blue Light Photoreceptors Are Activated through Interconversion of Flavin Redox States* , 2007, Journal of Biological Chemistry.

[19]  G. Falkenberg,et al.  A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons , 2007, Naturwissenschaften.

[20]  N. Troje,et al.  Lateralized activation of Cluster N in the brains of migratory songbirds , 2007, The European journal of neuroscience.

[21]  Paul Galland,et al.  Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana , 2007, Planta.

[22]  Thorsten Ritz,et al.  Zeeman resonances for radical-pair reactions in weak static magnetic fields , 2006 .

[23]  W. Wiltschko,et al.  Avian magnetic compass: fast adjustment to intensities outside the normal functional window , 2006, Naturwissenschaften.

[24]  Sönke Johnsen,et al.  The physics and neurobiology of magnetoreception , 2005, Nature Reviews Neuroscience.

[25]  Henrik Mouritsen,et al.  Magnetoreception and its use in bird navigation , 2005, Current Opinion in Neurobiology.

[26]  Alfonso F Davila,et al.  Magnetic pulse affects a putative magnetoreceptor mechanism. , 2005, Biophysical journal.

[27]  Henrik Mouritsen,et al.  Night-vision brain area in migratory songbirds. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Bouly,et al.  Light-induced Electron Transfer in Arabidopsis Cryptochrome-1 Correlates with in Vivo Function* , 2005, Journal of Biological Chemistry.

[29]  W. Wiltschko,et al.  Magnetic orientation and magnetoreception in birds and other animals , 2005, Journal of Comparative Physiology A.

[30]  T. Todo,et al.  The cryptochromes , 2005, Genome Biology.

[31]  A. Sancar,et al.  Cryptochromes and circadian photoreception in animals. , 2005, Methods in enzymology.

[32]  Thorsten Ritz,et al.  Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field , 2005, Naturwissenschaften.

[33]  Bernd Schierwater,et al.  Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass , 2004, Naturwissenschaften.

[34]  Henrik Mouritsen,et al.  Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Sans,et al.  Superoxide dismutase ameliorates TNBS‐induced colitis by reducing oxidative stress, adhesion molecule expression, and leukocyte recruitment into the inflamed intestine , 2004, Journal of leukocyte biology.

[36]  Chad A Brautigam,et al.  Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  U. Ruegg,et al.  Role of superoxide as a signaling molecule. , 2004, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[38]  Thorsten Ritz,et al.  Resonance effects indicate a radical-pair mechanism for avian magnetic compass , 2004, Nature.

[39]  H. Mohan,et al.  Reactions of Superoxide Radicals with Curcumin: Probable Mechanisms by Optical Spectroscopy and EPR , 2004, Free radical research.

[40]  H. Hayashi Introduction to Dynamic Spin Chemistry: Magnetic Field Effects on Chemical and Biochemical Reactions , 2004 .

[41]  A Fourquet,et al.  Topical superoxide dismutase reduces post‐irradiation breast cancer fibrosis , 2004, Journal of cellular and molecular medicine.

[42]  Michael Winklhofer,et al.  Superparamagnetic Magnetite in the Upper Beak Tissue of Homing Pigeons , 2000, Biometals.

[43]  Anthony R. Cashmore,et al.  Seeing blue: the discovery of cryptochrome , 1996, Plant Molecular Biology.

[44]  Thorsten Ritz,et al.  Anisotropic recombination of an immobilized photoinduced radical pair in a 50-μT magnetic field: a model avian photomagnetoreceptor , 2003 .

[45]  Baldissera Giovani,et al.  Light-induced electron transfer in a cryptochrome blue-light photoreceptor , 2003, Nature Structural Biology.

[46]  Aziz Sancar,et al.  Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. , 2003, Chemical reviews.

[47]  W. Wiltschko,et al.  Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons , 2003, The Journal of comparative neurology.

[48]  J. Kirschvink,et al.  The magnetic sense and its use in long-distance navigation by animals , 2002, Current Opinion in Neurobiology.

[49]  Onur Güntürkün,et al.  Lateralization of magnetic compass orientation in a migratory bird , 2002, Nature.

[50]  M. A. Wali,et al.  Superoxide radical concentration and superoxide dismutase (SOD) enzyme activity in varicose veins. , 2002, Annals of thoracic and cardiovascular surgery : official journal of the Association of Thoracic and Cardiovascular Surgeons of Asia.

[51]  Wolfgang Wiltschko,et al.  Magnetic compass orientation in birds and its physiological basis , 2002, Naturwissenschaften.

[52]  H. Ågren,et al.  Activation of triplet dioxygen by glucose oxidase: Spin-orbit coupling in the superoxide ion , 2002 .

[53]  W. Wiltschko,et al.  Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. , 2001, The Journal of experimental biology.

[54]  J. Christie,et al.  Blue Light Sensing in Higher Plants* , 2001, The Journal of Biological Chemistry.

[55]  F. J. Corpas,et al.  Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. , 2001, Trends in plant science.

[56]  A. Eker,et al.  Intraprotein radical transfer during photoactivation of DNA photolyase , 2000, Nature.

[57]  Sönke Johnsen,et al.  The neurobiology of magnetoreception in vertebrate animals , 2000, Trends in Neurosciences.

[58]  K. Schulten,et al.  A model for photoreceptor-based magnetoreception in birds. , 2000, Biophysical journal.

[59]  F. Muller The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging , 2000, Journal of the American Aging Association.

[60]  A. Bacher,et al.  EPR, ENDOR, and TRIPLE resonance spectroscopy on the neutral flavin radical in Escherichia coli DNA photolyase. , 1999, Biochemistry.

[61]  A. Cashmore,et al.  Cryptochromes: blue light receptors for plants and animals. , 1999, Science.

[62]  A. Stuchebrukhov,et al.  Pathways of electron transfer in Escherichia coli DNA photolyase: Trp306 to FADH. , 1999, Biophysical journal.

[63]  C. Timmel,et al.  Effects of weak magnetic fields on free radical recombination reactions , 1998 .

[64]  J. Mclean,et al.  Magnetic Field Effects on the Behavior of Radicals in Protein and DNA Environments , 1998, Photochemistry and photobiology.

[65]  L. Eriksson,et al.  Theoretical Study of Model Tryptophan Radicals and Radical Cations: Comparison with Experimental Data of DNA Photolyase, Cytochrome c Peroxidase, and Ribonucleotide Reductase , 1997 .

[66]  B. Sjöberg,et al.  Electronic structure of neutral tryptophan radicals in ribonucleotide reductase studied by EPR and ENDOR spectroscopy , 1996 .

[67]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[68]  K. Schulten,et al.  A perturbation treatment of oscillating magnetic fields in the radical pair mechanism using the Liouville equation , 1995 .

[69]  Klaus Schulten,et al.  A perturbation theory treatment of oscillating magnetic fields in the radical pair mechanism , 1994 .

[70]  Wolfgang Wiltschko,et al.  Red light disrupts magnetic orientation of migratory birds , 1993, Nature.

[71]  J. Scaiano,et al.  A comparative study of magnetic field effects on the dynamics of geminate and random radical pair processes in micelles , 1993 .

[72]  K. Schulten,et al.  Model for a physiological magnetic compass , 1986 .

[73]  Nino Boccara,et al.  Biophysical Effects of Steady Magnetic Fields , 1986 .

[74]  K. Schulten Ensemble averaged spin pair dynamics of doublet and triplet molecules , 1984 .

[75]  Klaus Schulten,et al.  Magnetic Field Effects in Chemistry and Biology , 1982 .

[76]  G. Innocenti,et al.  Callosal connections of suprasylvian visual areas in the cat , 1981, Neuroscience.

[77]  K. Schulten,et al.  Exploring fast electron transfer processes by magnetic fields. , 1978, Biophysical Journal.

[78]  K. Schulten,et al.  Semiclassical description of electron spin motion in radicals including the effect of electron hopping , 1978 .

[79]  Klaus Schulten,et al.  A Biomagnetic Sensory Mechanism Based on Magnetic Field Modulated Coherent Electron Spin Motion , 1978 .

[80]  K. Schulten,et al.  Theory of the magnetic field modulated geminate recombination of radical ion pairs in polar solvents: Application to the pyrene–N,N‐dimethylaniline system , 1977 .

[81]  K. Schulten,et al.  Magnetic Field Dependence of the Geminate Recombination of Radical Ion Pairs in Polar Solvents , 1976 .

[82]  W. Wiltschko,et al.  Magnetic Compass of European Robins , 1972, Science.

[83]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[84]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[85]  S. Lowen The Biophysical Journal , 1960, Nature.

[86]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.