Geometric Applications of a Randomized Optimization Technique

Abstract. We propose a simple, general, randomized technique to reduce certain geometric optimization problems to their corresponding decision problems. These reductions increase the expected time complexity by only a constant factor and eliminate extra logarithmic factors in previous, often more complicated, deterministic approaches (such as parametric searching). Faster algorithms are thus obtained for a variety of problems in computational geometry: finding minimal k -point subsets, matching point sets under translation, computing rectilinear p -centers and discrete 1-centers, and solving linear programs with k violations.

[1]  Jirí Matousek,et al.  Efficient partition trees , 1991, SCG '91.

[2]  Micha Sharir,et al.  Efficient algorithms for geometric optimization , 1998, CSUR.

[3]  David M. Mount,et al.  A randomized algorithm for slope selection , 1992, Int. J. Comput. Geom. Appl..

[4]  Andrew Chi-Chih Yao Decision Tree Complexity and Betti Numbers , 1997, J. Comput. Syst. Sci..

[5]  Alexander Lubotzky,et al.  Explicit expanders and the Ramanujan conjectures , 1986, STOC '86.

[6]  Richard Cole,et al.  Slowing down sorting networks to obtain faster sorting algorithms , 2015, JACM.

[7]  Kenneth L. Clarkson,et al.  New applications of random sampling in computational geometry , 1987, Discret. Comput. Geom..

[8]  Sariel Har-Peled Constructing cuttings in theory and practice , 1998, SCG '98.

[9]  David Eppstein,et al.  Faster construction of planar two-centers , 1997, SODA '97.

[10]  Jirí Matousek,et al.  On Constants for Cuttings in the Plane , 1998, Discret. Comput. Geom..

[11]  Micha Sharir A Near-Linear Algorithm for the Planar 2-Center Problem , 1997, Discret. Comput. Geom..

[12]  Peter Widmayer,et al.  k-Violation Linear Programming , 1994, Inf. Process. Lett..

[13]  Jirí Matousek,et al.  On Enclosing k Points by a Circle , 1995, Inf. Process. Lett..

[14]  Martin E. Dyer,et al.  Linear Time Algorithms for Two- and Three-Variable Linear Programs , 1984, SIAM J. Comput..

[15]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[16]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[17]  Bernard Chazelle,et al.  Optimal Slope Selection Via Cuttings , 1994, CCCG.

[18]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1993, Discret. Comput. Geom..

[19]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[20]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[21]  Hazel Everett,et al.  An optimal algorithm for the (≤ k)-levels, with applications to separation and transversal problems , 1993, SCG '93.

[22]  Michael T. Goodrich,et al.  Geometric Pattern Matching Under Euclidean Motion , 1993, Comput. Geom..

[23]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[24]  Z. Drezner On the rectangular p‐center problem , 1987 .

[25]  Micha Sharir,et al.  An Expander-Based Approach to Geometric Optimization , 1997, SIAM J. Comput..

[26]  Bernard Chazelle,et al.  Product range spaces, sensitive sampling, and derandomization , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[27]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[28]  Alon Efrat,et al.  Geometric Pattern Matching in d -Dimensional Space , 1995, ESA.

[29]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[30]  Micha Sharir,et al.  Efficient randomized algorithms for some geometric optimization problems , 1996, Discret. Comput. Geom..

[31]  Jirí Matousek,et al.  A Deterministic Algorithm for the Three-dimensional Diameter Problem , 1996, Comput. Geom..

[32]  Edgar A. Ramos Construction of 1-d lower envelopes and applications , 1997, SCG '97.

[33]  Klara Kedem,et al.  Getting around a lower bound for the minimum Hausdorff distance , 1998, Comput. Geom..

[34]  Jirí Matousek,et al.  Randomized Optimal Algorithm for Slope Selection , 1991, Inf. Process. Lett..

[35]  Leonidas J. Guibas,et al.  Diameter, width, closest line pair, and parametric searching , 1993, Discret. Comput. Geom..

[36]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[37]  Jirí Matousek,et al.  Ray Shooting and Parametric Search , 1993, SIAM J. Comput..

[38]  Micha Sharir,et al.  Optimal Slope Selection Via Expanders , 1993, CCCG.

[39]  J. Matoušek,et al.  On geometric optimization with few violated constraints , 1994, SCG '94.

[40]  Micha Sharir,et al.  Rectilinear and polygonal p-piercing and p-center problems , 1996, SCG '96.

[41]  Michiel H. M. Smid,et al.  Static and Dynamic Algorithms for k-Point Clustering Problems , 1995, J. Algorithms.

[42]  Micha Sharir,et al.  Computing the Smallest K-enclosing Circle and Related Problems , 1994, Comput. Geom..

[43]  Christos Makris,et al.  Fast piercing of iso-oriented rectangles , 1997, CCCG.

[44]  Jirí Matousek,et al.  Reporting Points in Halfspaces , 1992, Comput. Geom..

[45]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[46]  Timothy M. Chan More planar two-center algorithms , 1999, Comput. Geom..

[47]  Elmar Schömer,et al.  Efficient collision detection for moving polyhedra , 1995, SCG '95.

[48]  Timothy M. Chan Output-sensitive results on convex hulls, extreme points, and related problems , 1996, Discret. Comput. Geom..

[49]  Binay K. Bhattacharya Biased search and k-point clustering , 1997, CCCG.

[50]  Klara Kedem,et al.  On some geometric selection and optimization problems via sorted matrices , 1998, Comput. Geom..

[51]  Nancy M. Amato,et al.  Parallel algorithms for higher-dimensional convex hulls , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[52]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[53]  Sunil Arya,et al.  Approximate nearest neighbor queries in fixed dimensions , 1993, SODA '93.

[54]  Micha Sharir,et al.  The Discrete 2-Center Problem , 1998, Discret. Comput. Geom..

[55]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[56]  Sivan Toledo,et al.  Applications of parametric searching in geometric optimization , 1992, SODA '92.

[57]  Timothy M. Chan Fixed-dimensional linear programming queries made easy , 1996, SCG '96.

[58]  Alok Aggarwal,et al.  Finding k Points with Minimum Diameter and Related Problems , 1991, J. Algorithms.

[59]  Micha Sharir,et al.  Finding Maximally Consistent Sets of Halfspaces , 1993, CCCG.

[60]  Bernard Chazelle,et al.  Cutting hyperplanes for divide-and-conquer , 1993, Discret. Comput. Geom..

[61]  David Eppstein,et al.  Iterated nearest neighbors and finding minimal polytopes , 1993, SODA '93.