A comprehensive mechanism for methanol oxidation

A comprehensive detailed chemical kinetic mechanism for methanol oxidation has been developed and validated against multiple experimental data sets. The data are from static-reactor, flow-reactor, shock-tube, and laminar-flame experiments, and cover conditions of temperature from 633–2050 K, pressure from 0.26–20 atm, and equivalence ratio from 0.05–2.6. Methanol oxidation is found to be highly sensitive to the kinetics of the hydroperoxyl radical through a chain-branching reaction sequence involving hydrogen peroxide at low temperatures, and a chain-terminating path at high temperatures. The sensitivity persists at unusually high temperatures due to the fast reaction of CH2OH+O2=CH2O+HO2 compared to CH2OH+M=CH2O+H+M. The branching ratio of CH3OH+OH=CH2OH/CH3O+H2O was found to be a more important parameter under the higher temperature conditions, due to the rate-controlling nature of the branching reaction of the H-atom formed through CH3O thermal decomposition. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 805–830, 1998

[1]  J. Troe,et al.  Thermal decomposition of methane behind reflected shock waves , 1971 .

[2]  C. M. Lund,et al.  A numerical model of chemical kinetics of combustion in a turbulent flow reactor , 1977 .

[3]  H. Baba,et al.  Phosphorescence and its characteristics in pyridine vapor , 1984 .

[4]  D. Gutman,et al.  Kinetics of the reactions of methoxy and ethoxy radicals with oxygen , 1982 .

[5]  J. Troe,et al.  Shock wave studies of the reactions HO+H2O2→H2O+HO2 and HO+HO2→H2O+O2 between 930 and 1680 K , 1995 .

[6]  D. Bradley,et al.  Laminar flame structure and burning velocities of premixed methanol-air , 1991 .

[7]  J. Dove,et al.  Examination of Possible Non-Arrhenius Behavior in the reactions , 1973 .

[8]  P. Ashmore,et al.  A critical survey of rate constants for reactions in gas-phase hydrocarbon oxidation , 1975 .

[9]  Craig T. Bowman,et al.  A shock-tube investigation of the high-temperature oxidation of methanol , 1975 .

[10]  C. J. Rallis,et al.  Laminar burning velocity of stoichiometric methane-air: pressure and temperature dependence , 1978 .

[11]  J. B. Gardner,et al.  Comparative Studies of the Slow Combustion of Methane, Methyl Alcohol, Formaldehyde, and Formic Acid , 1936 .

[12]  T. Just,et al.  Non-arrhenius behavior of the reaction of hydroxymethyl radicals with molecular oxygen , 1988 .

[13]  D. Spalding,et al.  Combustion of hydrogen and oxygen in a steady-flow adiabatic stirred reactor , 1967 .

[14]  Craig T. Bowman,et al.  An Experimental and Analytical Investigation of the High-Temperature Oxidation Mechanisms of Hydrocarbon Fuels , 1970 .

[15]  S. Yamazaki,et al.  A kinetic study of the pyrolysis of methanol using shock tube and computer simulation techniques , 1992 .

[16]  D. W. Naegeli,et al.  Kinetics of the pyrolysis of methanol , 1977 .

[17]  W. Tsang Rate constants for the decomposition and formation of simple alkanes over extended temperature and pressure ranges , 1989 .

[18]  J. Warnatz,et al.  Calculation of Burning Velocity and Flame Structure in Methanol – Air Mixtures , 1983 .

[19]  W. C. Gardiner,et al.  An evaluation of methane combustion mechanisms , 1977 .

[20]  C. J. Jachimowski An experimental and analytical study of acetylene and ethylene oxidation behind shock waves , 1977 .

[21]  W. Hess,et al.  Hydrogen-atom abstraction from methanol by hydroxyl radical , 1989 .

[22]  G. Andrews,et al.  The burning velocity of methane-air mixtures , 1972 .

[23]  R. Bartlett,et al.  On the unimolecular reactions of CH3O and CH2OH , 1982 .

[24]  Frederick L. Dryer,et al.  High Temperature Oxidation of Carbon Monoxide and Methane in a Turbulent Flow Reactor , 1972 .

[25]  G. Moretti A new technique for the numerical analysis of nonequilibrium flows , 1965 .

[26]  G. B. Skinner,et al.  Kinetics of Methane Oxidation , 1972 .

[27]  Peter C. Gray,et al.  Methyl radical reactions with isopropanol and methanol, their ethers and their deuterated derivatives , 1968 .

[28]  J. Troe,et al.  High-pressure falloff curves and specific rate constants for the reactions atomic hydrogen + molecular oxygen .dblharw. perhydroxyl .dblharw. hydroxyl + atomic oxygen , 1985 .

[29]  M. Lin,et al.  Kinetics of the methoxy radical decomposition reaction: theory and experiment , 1989 .

[30]  A. Clark,et al.  A study of acetylene-oxygen flames , 1969 .

[31]  R. Timonen,et al.  Kinetics of the reaction between formyl radicals and atomic hydrogen , 1987 .

[32]  A. Wagner,et al.  The addition and dissociation reaction atomic hydrogen + carbon monoxide .dblharw. oxomethyl. 2. Experimental studies and comparison with theory , 1987 .

[33]  K. R. Winn,et al.  Removal rate constant measurements for methoxy radical by oxygen over the 298-973 K range , 1987 .

[34]  T. S. Norton,et al.  Toward a comprehensive mechanism for methanol pyrolysis , 1990 .

[35]  Richard A. Yetter,et al.  A Comprehensive Reaction Mechanism For Carbon Monoxide/Hydrogen/Oxygen Kinetics , 1991 .

[36]  T. A. Brabbs,et al.  Shock tube measurements of specific reaction rates in the branched chain CH4-CO-O2 system , 1971 .

[37]  J. Herron An evaluation of rate data for the reactions of atomic Oxygen (O3P) with methane and ethane , 1969 .

[38]  A. Marchese,et al.  The Effect of Non-Luminous Thermal Radiation in Microgravity Droplet Combustion , 1997 .

[39]  R. R. Baldwin,et al.  Problems and progress in hydrocarbon oxidation , 1973 .

[40]  J. Sutherland,et al.  Rate constants for the reactions of hydrogen atom with water and hydroxyl with hydrogen by the flash photolysis-shock tube technique over the temperature range 1246-2297 K , 1988 .

[41]  W. Gardiner,et al.  Source of Schlieren Signals from Acetylene Combustion in Shock Waves , 1968 .

[42]  H. Wagner,et al.  An Investigation of the Methanol Decomposition Behind Incident Shock Waves , 1991 .

[43]  G. N. Robertson,et al.  Elementary Reactions in the Methanol Oxidation System. Part II: Measurement and Modeling of Autoignition in a Methanol-Fuelled Otto Engine , 1992 .

[44]  David M. Wardlaw,et al.  Study of the recombination reaction methyl + methyl .fwdarw. ethane. 2. Theory , 1988 .

[45]  A. C. Norris,et al.  The addition of methane to slowly reacting hydrogen-oxygen mixtures: Reactions of methyl radicals , 1970 .

[46]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[47]  M. W. Slack,et al.  Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times , 1977 .

[48]  P. Pacey Detection of methyl radicals in flow pyrolysis by ultraviolet spectroscopy , 1973 .

[49]  R. R. Baldwin,et al.  The carbon monoxide-sensitized decomposition of hydrogen peroxide , 1970 .

[50]  C. Hinshelwood,et al.  Further investigations on the kinetics of gaseous oxidation reactions , 1930 .

[51]  M. G. Dodson,et al.  A shock-tube study of the ignition of methanol and ethanol with oxygen , 1971 .

[52]  A. Lloyd Evaluated and estimated kinetic data for phase reactions of the hydroperoxyl radical , 1974 .

[53]  H. F. Calcote,et al.  Effect of Molecular Structure on Burning Velocity. , 1959 .

[54]  E. J. Harris Note on the decomposition of hydrogen peroxide and its formation during the slow combustion of hydrocarbons , 1948 .

[55]  D. Singleton,et al.  Rates of hydroxyl radical reactions. Part 14. Rate constant and mechanism for the reaction of hydroxyl radical with formic acid , 1986 .

[56]  Jürgen Troe,et al.  Shock wave study of the reaction HO2+HO2→H2O2+O2 : Confirmation of a rate constant minimum near 700 K , 1990 .

[57]  J. Sutherland,et al.  Rate constant for the O(3P) + CH4 .fwdarw. OH + CH3 reaction obtained by the flash photolysis-shock tube technique over the temperature range 760 .ltoreq. T .ltoreq. 1760 K , 1986 .

[58]  A. G. Gaydon,et al.  Spectroscopic studies of low-pressure flames , 1948 .

[59]  Chung King Law,et al.  A Comprehensive Study of Methanol Kinetics in Freely-Propagating and Burner-Stabilized Flames, Flow and Static Reactors, and Shock Tubes , 1992 .

[60]  J. Troe,et al.  Specific rate constants k(E,J) and product state distributions in simple bond fission reactions. II. Application to HOOH→OH+OH , 1987 .

[61]  S. Madronich,et al.  High Temperature Photochemistry (HTP): Kinetics and mechanism studies of elementary combustion reactions over 300-1700 K , 1986 .

[62]  Kazunobu Hashimoto,et al.  Shock tube study on homogeneous thermal oxidation of methanol , 1981 .

[63]  R. A. Cox,et al.  Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III - gas phase reactions of inorganic halogens , 2006 .

[64]  Alan Williams,et al.  Shock-tube studies of the ignition and combustion of ethane and slightly rich methane mixtures with oxygen , 1971 .

[65]  C. Westbrook An Analytical Study of the Shock Tube Ignition of Mixtures of Methane and Ethane , 1979 .

[66]  Hiroyuki Kawano,et al.  Thermal decomposition of methanol in shock waves , 1989 .

[67]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part 2. Methanol , 1987 .

[68]  C. Vovelle,et al.  Flame profiles and combustion mechanisms of methanol-air flames under reduced pressure , 1978 .

[69]  M. Molina,et al.  Chemical kinetics and photochemical data for use in stratospheric modeling , 1985 .

[70]  E. Lissi,et al.  Oxidation of carbon monoxide by methoxy-radicals , 1973 .

[71]  M. Metghalchi,et al.  Burning Velocities of Mixtures of Air with Methanol, Isooctane, and Indolene at High Pressure and Temperature , 1982 .

[72]  K. Westberg,et al.  Chemical Kinetic Data Sheets for High‐Temperature Chemical Reactions , 1983 .

[73]  R. Huie,et al.  Rate Constants for the Reactions of Atomic Oxygen (O 3P) with Organic Compounds in the Gas Phase , 1973 .

[74]  R. Timonen,et al.  Kinetics of the reactions of the formyl radical with oxygen, nitrogen dioxide, chlorine, and bromine , 1988 .

[75]  Craig T. Bowman,et al.  Non-equilibrium radical concentrations in shock-initiated methane oxidation , 1975 .

[76]  D. Gutman,et al.  Kinetics of the reaction between methyl radicals and oxygen atoms between 294 and 900 K , 1987 .

[77]  K. Hoyermann,et al.  The Application of Multi‐Photon Ionization Mass Spectrometry to the Study of the Reactions O + C2H4, F + C3H6, F + c‐C3H6, F + CH3OH, H + CH2OH and O + CH3O , 1988 .

[78]  A. Marchese,et al.  The effect of liquid mass transport on the combustion and extinction of bicomponent droplets of methanol and water , 1996 .

[79]  J. Olsson,et al.  Addition of water to premixed laminar methanol-air flames: experimental and computational results , 1986 .

[80]  C. Tipper,et al.  The slow combustion of methyl alcohol. A general investigation , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[81]  J. Keck,et al.  Autoignition of Alcohols and Ethers in a Rapid Compression Machine , 1993 .

[82]  G. R. Hill,et al.  A Kinetic Study of Methyl Chloride Combustion , 1956 .

[83]  S. Benson,et al.  Mechanisms for some high-temperature gas-phase reactions of ethylene, acetylene, and butadiene , 1967 .

[84]  Toshisuke Hirano,et al.  Burning velocities of methanol-air-water gaseous mixtures , 1981 .

[85]  M. Kurylo,et al.  Absolute Rate Constants for the Reaction of Atomic Oxygen with Ethylene over the Temperature Range 232–500°K , 1972 .

[86]  J. Troe,et al.  Rate constants of the reaction HO+H2O2→HO2+H2O at T⩾1000 K , 1992 .

[87]  H. Wagner,et al.  Zum thermischen unimolekularen Zerfall von Methanol , 1982 .

[88]  J. Burrows,et al.  On the isomerisation of the methoxy radical relevance to atmospheric chemistry and combustion , 1981 .

[89]  C. Westbrook,et al.  Comprehensive Mechanism for Methanol Oxidation , 1979 .

[90]  J. Olsson,et al.  Lean premixed laminar methanol flames: a computational study , 1987 .

[91]  F. Dryer,et al.  Kinetics of the oxidation of methanol: Experimental results semi-global modeling and mechanistic concepts , 1979 .

[92]  P. Tiggelen,et al.  Reaction mechanisms of combustion in low pressure acetylene-oxygen flames , 1977 .

[93]  G. R. Hill,et al.  A kinetic comparison of the combustion of methyl alcohol and methane , 1955 .

[94]  M. Carlier,et al.  Experimental and numerical analysis of a low pressure stoichiometric methanol-air flame , 1989 .

[95]  W. C. Gardiner,et al.  Initiation rate for shock-heated hydrogen-oxygen-carbon monoxide-argon mixtures as determined by OH induction time measurements , 1971 .

[96]  Jozef Peeters,et al.  Reaction mechanisms and rate constants ofelementary steps in methane-oxygen flames , 1973 .

[97]  H. Johnston,et al.  Computation of high-temperature rate constants for bimolecular reactions of combustion products , 1967 .

[98]  Henri James,et al.  Etude de l'oxydation et de l'auto-inflammation du méthanol dans le domaine de températures 500-600°C , 1982 .

[99]  Raymond W. Walker,et al.  The reaction of OH radicals and HO2 radicals with carbon monoxide , 1977 .

[100]  C. Westbrook,et al.  Prediction of laminar flame properties of methanol-air mixtures , 1980 .

[101]  D. Gutman,et al.  Kinetics of the CH{sub 2}OH + HBr and CH{sub 2}OH + HI reactions and determination of the heat of formation of CH{sub 2}OH , 1992 .

[102]  T. S. Norton,et al.  Some New Observations on Methanol Oxidation Chemistry , 1989 .

[103]  H. Radford The fast reaction of CH2OH with O2 , 1980 .

[104]  Simone Hochgreb,et al.  A comprehensive study on CH2O oxidation kinetics , 1992 .

[105]  G. N. Robertson,et al.  Elementary Reactions in the Methanol Oxidation System. Part I: Establishment of the Mechanism and Modelling of Laminar Burning Velocities , 1992 .

[106]  M. Carlier,et al.  Analysis by gas-phase electron spin resonance of hydrogen, oxygen, hydroxyl, and halogen atoms in flames , 1982 .

[107]  P. Roth,et al.  Production of hydrogen atoms during the thermal dissociation of ethylene between 1700 and 2200°K , 1977 .

[108]  T. Just,et al.  Reactions via Chemically Activated Methanol and their Meaning for the Modeling of CH4-Air Flames and CH3OH-Air Flames , 1993 .

[109]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .