A fuzzy clustering algorithm enhancing local model interpretability
暂无分享,去创建一个
[1] David G. Stork,et al. Pattern classification, 2nd Edition , 2000 .
[2] Bernard De Baets,et al. Comparison of clustering algorithms in the identification of Takagi-Sugeno models: A hydrological case study , 2006, Fuzzy Sets Syst..
[3] Michio Sugeno,et al. Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.
[4] Rolf Johansson,et al. System modeling and identification , 1993 .
[5] Michio Sugeno,et al. A fuzzy-logic-based approach to qualitative modeling , 1993, IEEE Trans. Fuzzy Syst..
[6] Li-Xin Wang,et al. A Course In Fuzzy Systems and Control , 1996 .
[7] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[8] James M. Keller,et al. A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..
[9] Yoshiteru Nakamori,et al. Simultaneous Analysis of Classification and Regression by Adaptive Fuzzy Clustering , 1996 .
[10] John Yen,et al. Improving the interpretability of TSK fuzzy models by combining global learning and local learning , 1998, IEEE Trans. Fuzzy Syst..
[11] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[12] Robert Shorten,et al. On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models , 2000, IEEE Trans. Fuzzy Syst..
[13] José Luis Navarro,et al. Target-shaped possibilistic clustering applied to local-model identification , 2006, Eng. Appl. Artif. Intell..
[14] Andrew A. Goldenberg,et al. Development of a systematic methodology of fuzzy logic modeling , 1998, IEEE Trans. Fuzzy Syst..
[15] Antonio Sala,et al. Target-Shape Possibilistic Clustering Applied to Local-Model Identification , 2004 .
[16] Donald Gustafson,et al. Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.
[17] Roderick Murray-Smith,et al. The operating regime approach to nonlinear modelling and control , 1997 .
[18] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[19] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[20] Gary G. Yen,et al. On the local interpretation of Takagi-Sugeno fuzzy models from a dynamical systems view , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).
[21] Eric Walter,et al. Identification of Parametric Models: from Experimental Data , 1997 .
[22] Robert Babuska,et al. Perspectives of fuzzy systems and control , 2005, Fuzzy Sets Syst..
[23] Rajesh N. Davé,et al. Robust clustering methods: a unified view , 1997, IEEE Trans. Fuzzy Syst..
[24] Uzay Kaymak,et al. Improved covariance estimation for Gustafson-Kessel clustering , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).
[25] Roderick Murray-Smith,et al. Multiple Model Approaches to Modelling and Control , 1997 .
[26] Rajesh N. Davé,et al. Characterization and detection of noise in clustering , 1991, Pattern Recognit. Lett..
[27] Tor Arne Johansen,et al. Local learning in local model networks , 1995 .
[28] R. Babuska,et al. Improved inference for Takagi-Sugeno models , 1996, Proceedings of IEEE 5th International Fuzzy Systems.
[29] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[30] Robert Babuska,et al. Fuzzy Modeling for Control , 1998 .
[31] Serge Guillaume,et al. Designing fuzzy inference systems from data: An interpretability-oriented review , 2001, IEEE Trans. Fuzzy Syst..
[32] David G. Stork,et al. Pattern Classification , 1973 .
[33] Aníbal Ollero,et al. Fuzzy Methodologies for Interactive Multicriteria Optimization , 1980, IEEE Transactions on Systems, Man, and Cybernetics.
[34] R.J. Hathaway,et al. Switching regression models and fuzzy clustering , 1993, IEEE Trans. Fuzzy Syst..
[35] Plamen P. Angelov,et al. Fuzzy systems design: direct and indirect approaches , 2006, Soft Comput..