New Developments in QSPR/QSAR Modeling Based on Topological Indices

Abstract An efficient algorithm for deriving QSPR/QSAR models with nonorthogonal and ordered orthogonal descriptors, based on orthogonalization of topological indices, is presented. It is applied to structure-boiling point modeling of nonanes as the test case. The selection of the best descriptors from multivariate linear regression modeling is carried out using descriptors which are first orthogonalized. It is shown that such an algorithm is applicable for the selection of the best descriptors in a multivariate linear regression model even to very large sets of descriptors. A computationally-effective method for the (ordered) orthogonalization of topological indices is also introduced. By the use of an ordered orthogonalization procedure it is possible to select the best order of descriptors for orthogonalization. The orthogonalization in the selected order of descriptors produces models with a smaller number of significant descriptors. The comparison between QSPR/QSAR models with nonorthogonal and order...

[1]  K. Balasubramanian Geometry-dependent connectivity indices for the characterization of molecular structures , 1995 .

[2]  Nenad Trinajstic,et al.  Calculation of Retention Times of Anthocyanins with Orthogonalized Topological Indices , 1995, J. Chem. Inf. Comput. Sci..

[3]  Davor Juretic,et al.  The Structure-Property Models Can Be Improved Using the Orthogonalized Descriptors , 1995, J. Chem. Inf. Comput. Sci..

[4]  Dennis H. Rouvray,et al.  The modeling of chemical phenomena using topological indices , 1987 .

[5]  Igor V. Tetko,et al.  Neural Network Studies, 2. Variable Selection , 1996, J. Chem. Inf. Comput. Sci..

[6]  L B Kier,et al.  Molecular connectivity. II: Relationship to water solubility and boiling point. , 1975, Journal of pharmaceutical sciences.

[7]  Milan Randic Representation of molecular graphs by basic graphs , 1992, J. Chem. Inf. Comput. Sci..

[8]  M. Randic,et al.  ISOMERIC VARIATIONS IN ALKANES : BOILING POINTS OF NONANES , 1994 .

[9]  M. Karelson,et al.  Quantum-Chemical Descriptors in QSAR/QSPR Studies. , 1996, Chemical reviews.

[10]  A. Sabljic,et al.  Quantitative modeling of soil sorption for xenobiotic chemicals. , 1989, Environmental health perspectives.

[11]  L. Hall,et al.  Molecular connectivity in chemistry and drug research , 1976 .

[12]  Paul G. Seybold,et al.  Molecular structure: Property relationships , 1987 .

[13]  Dennis H. Rouvray,et al.  The limits of applicability of topological indices , 1989 .

[14]  Milan Randic,et al.  Orthogonal molecular descriptors , 1991 .

[15]  Aleksandar Sabljić,et al.  Quantitative modeling of environmental fate and impact of commercial chemicals , 1992 .

[16]  N. Trinajstic Chemical Graph Theory , 1992 .

[17]  George M. Whitesides,et al.  FEED-FORWARD NEURAL NETWORKS IN CHEMISTRY : MATHEMATICAL SYSTEMS FOR CLASSIFICATION AND PATTERN RECOGNITION , 1993 .

[18]  P. Seybold,et al.  Molecular modeling of the physical properties of the alkanes , 1988 .

[19]  Nenad Trinajstic,et al.  Structure-Activity Correlation of Flavone Derivatives for Inhibition of cAMP Phosphodiesterase , 1996, J. Chem. Inf. Comput. Sci..

[20]  Gerald J. Niemi,et al.  Predicting properties of molecules using graph invariants , 1991 .

[21]  J. Devillers,et al.  Practical applications of quantitative structure-activity relationships (QSAR) in environmental chemistry and toxicology , 1990 .

[22]  A. Darchen,et al.  ELECTROCHEMICAL, THERMOCHEMICAL, AND KINETIC STUDIES OF ELECTRON-TRANSFER CATALYSIS AND DEACTIVATION REACTIONS DURING ARENE REPLACEMENT BY P(OME)3 LIG ANDS IN (ETA 5-CYCLOPENTADIENYL) (ETA 6-ARENE) IRON (II) CATIONS , 1995 .

[23]  M. Randic,et al.  MOLECULAR PROFILES NOVEL GEOMETRY-DEPENDENT MOLECULAR DESCRIPTORS , 1995 .

[24]  M. Karelson,et al.  Correlation of Boiling Points with Molecular Structure. 1. A Training Set of 298 Diverse Organics and a Test Set of 9 Simple Inorganics , 1996 .

[25]  L. Pogliani Modeling with Special Descriptors Derived from a Medium-Sized Set of Connectivity Indices , 1996 .

[26]  H. Hosoya Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1971 .

[27]  Peter C. Jurs,et al.  Prediction of Aqueous Solubility for a Diverse Set of Heteroatom-Containing Organic Compounds Using a Quantitative Structure-Property Relationship , 1996, J. Chem. Inf. Comput. Sci..

[28]  Milan Randić,et al.  Comparative Regression Analysis. Regressions Based on a Single Descriptor , 1993 .

[29]  Nenad Trinajstić,et al.  A Novel QSPR Approach to Physicochemical Properties of the α-Amino Acids , 1995 .

[30]  Zlatko Mihalić,et al.  A graph-theoretical approach to structure-property relationships , 1992 .

[31]  Hugo Kubinyi,et al.  Evolutionary variable selection in regression and PLS analyses , 1996 .

[32]  Subhash C. Basak,et al.  Estimation of the Normal Boiling Points of Haloalkanes Using Molecular Similarity , 1996 .

[33]  Lionello Pogliani,et al.  Molecular Modeling by Linear Combinations of Connectivity Indexes , 1995 .

[34]  Anton J. Hopfinger,et al.  Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships , 1994, J. Chem. Inf. Comput. Sci..

[35]  Frank Harary,et al.  Graph Theory , 2016 .

[36]  Milan Randić,et al.  Generalized molecular descriptors , 1991 .

[37]  Lionello Pogliani Molecular connectivity descriptors of the physicochemical properties of the .alpha.-amino acids , 1994 .

[38]  I. Lukovits The Detour Index , 1996 .

[39]  Milan Randic,et al.  Nonempirical approach to structure–activity studies† , 1984 .

[40]  Lionello Pogliani,et al.  Molecular connectivity model for determination of physicochemical properties of .alpha.-amino acids , 1993 .

[41]  Douglas J. Klein,et al.  Hierarchical orthogonalization of descriptors , 1997 .

[42]  N. Novikova,et al.  Topological analysis of the structure-mesomorphous property ralationship , 1994 .

[43]  L. Pogliani A STRATEGY FOR MOLECULAR MODELING OF A PHYSICOCHEMICAL PROPERTY USING A LINEAR COMBINATION OF CONNECTIVITY INDEXES , 1996 .

[44]  I Lukovits Quantitative structure-activity relationships employing independent quantum chemical indices. , 1983, Journal of medicinal chemistry.

[45]  Curve-fitting paradox , 1994 .

[46]  Lionello Pogliani,et al.  Modeling Purines and Pyrimidines with the Linear Combination of Connectivity Indices-Molecular Connectivity "LCCI-MC" Method , 1996, J. Chem. Inf. Comput. Sci..

[47]  M. Karelson,et al.  QSPR: the correlation and quantitative prediction of chemical and physical properties from structure , 1995 .

[48]  Milan Randic,et al.  Resolution of ambiguities in structure-property studies by use of orthogonal descriptors , 1991, J. Chem. Inf. Comput. Sci..

[49]  Subhash C. Basak,et al.  A Comparative Study of Topological and Geometrical Parameters in Estimating Normal Boiling Point and Octanol/Water Partition Coefficient , 1996, J. Chem. Inf. Comput. Sci..

[50]  A. Sabljic,et al.  Chemical topology and ecotoxicology. , 1991, The Science of the total environment.

[51]  Ernesto Estrada,et al.  Edge Adjacency Relationships and a Novel Topological Index Related to Molecular Volume , 1995, J. Chem. Inf. Comput. Sci..