Ab-initio Study of Size and Strain Effects on the Electronic Properties of Si Nanowires

We have applied density-functional theory (DFT) based calculations to investigate the size and strain effects on the electronic properties, such as band structures, energy gaps, and effective masses of the electron and the hole, in Si nanowires along the direction with diameters up to 5 nm. Under uniaxial strain, we find the band gap varies with strain and this variation is size dependent. For the 1 ~ 2 nm wire, the band gap is a linear function of strain, while for the 2 ~ 4 nm wire the gap variation with strain shows nearly parabolic behavior. This size dependence of the gap variation with strain is explained on the basis of orbital characters of the band edges. In addition we find that the expansive strain increases the effective mass of the hole, while compressive strain increases the effective mass of the electron. The study of size and strain effects on effective masses shows that effective masses of the electron and the hole can be reduced by tuning the diameter of the wire and applying appropriate strain.

[1]  S. Nayak,et al.  First-principles investigation of strain effects on the energy gaps in silicon nanoclusters , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  Paolo Lugli,et al.  Silicon-nanowire transistors with intruded nickel-silicide contacts. , 2006, Nano letters.

[3]  S. Nayak,et al.  Strain-engineered photoluminescence of silicon nanoclusters , 2006 .

[4]  A. Williamson,et al.  First principles simulations of the structural and electronic properties of silicon nanowires , 2006 .

[5]  L. Seravalli,et al.  Defect passivation in strain engineered InAs/(InGa)As quantum dots , 2005 .

[6]  L. Reining,et al.  Many-body perturbation theory using the density-functional concept: beyond the GW approximation. , 2005, Physical review letters.

[7]  R. Chau,et al.  A 90-nm logic technology featuring strained-silicon , 2004, IEEE Transactions on Electron Devices.

[8]  Eric M. Vogel,et al.  High inversion current in silicon nanowire field effect transistors , 2004 .

[9]  Xinglong Wu,et al.  Optical transition in discrete levels of Si quantum dots , 2004 .

[10]  T. Kotani,et al.  All-electron self-consistent GW approximation: application to Si, MnO, and NiO. , 2003, Physical review letters.

[11]  M. Chou,et al.  Quantum confinement and electronic properties of silicon nanowires. , 2004, Physical review letters.

[12]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[13]  M. Lee,et al.  Hole mobility enhancements in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex , 2003 .

[14]  S. Franchi,et al.  The effect of strain on tuning of light emission energy of InAs/InGaAs quantum-dot nanostructures , 2003 .

[15]  S. T. Lee,et al.  Small-Diameter Silicon Nanowire Surfaces , 2003, Science.

[16]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[17]  J. Grossman,et al.  Passivation effects of silicon nanoclusters , 2002 .

[18]  Giulia Galli,et al.  Quantum Monte Carlo calculations of nanostructure optical gaps: application to silicon quantum dots. , 2002, Physical review letters.

[19]  J. Grossman,et al.  Surface control of optical properties in silicon nanoclusters , 2002 .

[20]  Giulia Galli,et al.  Surface chemistry of silicon nanoclusters. , 2002, Physical review letters.

[21]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[22]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[23]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[24]  Luca Dal Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[25]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[26]  F. Buda,et al.  Strained semiconductor clusters in sodalite , 1999 .

[27]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[28]  P. Vogl,et al.  Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFET’s , 1998 .

[29]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[30]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[31]  Chen,et al.  Size Dependence of Structural Metastability in Semiconductor Nanocrystals , 1997, Science.

[32]  K. D. Hirschman,et al.  Silicon-based visible light-emitting devices integrated into microelectronic circuits , 1996, Nature.

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[35]  C. López,et al.  Synthesis and optical properties of CdS and Ge clusters in zeolite cages , 1996 .

[36]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[37]  Wang,et al.  Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. , 1992, Physical review. B, Condensed matter.

[38]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[39]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[40]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[41]  Louis E. Brus,et al.  Electronic wave functions in semiconductor clusters: experiment and theory , 1986 .

[42]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[43]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[44]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .