Inhibition of mitochondrial complex I reverses NOTCH1-driven metabolic reprogramming in T-cell acute lymphoblastic leukemia

[1]  S. Baker,et al.  Gilteritinib Inhibits Glutamine Uptake and Utilization in FLT3-ITD–Positive AML , 2021, Molecular Cancer Therapeutics.

[2]  Hossein Khiabanian,et al.  A novel and highly effective mitochondrial uncoupling drug in T-cell leukemia. , 2021, Blood.

[3]  H. Christofk,et al.  Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. , 2021, Cell metabolism.

[4]  M. Konopleva,et al.  The Combined Treatment With the FLT3-Inhibitor AC220 and the Complex I Inhibitor IACS-010759 Synergistically Depletes Wt- and FLT3-Mutated Acute Myeloid Leukemia Cells , 2020, Frontiers in Oncology.

[5]  M. Priault,et al.  Downregulation of Glutamine Synthetase, not glutaminolysis, is responsible for glutamine addiction in Notch1‐driven acute lymphoblastic leukemia , 2020, Molecular oncology.

[6]  D. Sabatini,et al.  Metabolic determinants of cellular fitness dependent on mitochondrial reactive oxygen species , 2020, Science Advances.

[7]  M. Konopleva,et al.  Inhibition of Oxidative Phosphorylation Reverses Bone Marrow Hypoxia Visualized in Imageable Syngeneic B-ALL Mouse Model , 2020, Frontiers in Oncology.

[8]  D. Herranz,et al.  A novel and highly effective mitochondrial uncoupling drug in T-cell leukemia , 2020, bioRxiv.

[9]  Gan Zhou,et al.  Inhibition of mTORC1/P70S6K pathway by Metformin synergistically sensitizes Acute Myeloid Leukemia to Ara-C. , 2020, Life sciences.

[10]  A. Olshen,et al.  Glucocorticoids paradoxically facilitate steroid resistance in T-cell acute lymphoblastic leukemias and thymocytes. , 2020, The Journal of clinical investigation.

[11]  Mike Tyers,et al.  Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. , 2019, Cancer cell.

[12]  M. Vooijs,et al.  The anti-malarial drug chloroquine sensitizes oncogenic NOTCH1 driven human T-ALL to γ-secretase inhibition , 2019, Oncogene.

[13]  S. Del Vecchio,et al.  Coordinate Modulation of Glycolytic Enzymes and OXPHOS by Imatinib in BCR-ABL Driven Chronic Myelogenous Leukemia Cells , 2019, International journal of molecular sciences.

[14]  J. Weinstein,et al.  Glutaminase Activity of L-Asparaginase Contributes to Durable Preclinical Activity against Acute Lymphoblastic Leukemia , 2019, Molecular Cancer Therapeutics.

[15]  F. Meric-Bernstam,et al.  Phase I trial of IACS-010759 (IACS), a potent, selective inhibitor of complex I of the mitochondrial electron transport chain, in patients (pts) with advanced solid tumors. , 2019, Journal of Clinical Oncology.

[16]  G. G. Galli,et al.  The landscape of cancer cell line metabolism , 2019, Nature Medicine.

[17]  Joshua M. Dempster,et al.  Agreement between two large pan-cancer CRISPR-Cas9 gene dependency data sets , 2019, Nature Communications.

[18]  Jason D. Buenrostro,et al.  The cis-Regulatory Atlas of the Mouse Immune System , 2019, Cell.

[19]  R. DePinho,et al.  Functional Genomics Reveals Synthetic Lethality between Phosphogluconate Dehydrogenase and Oxidative Phosphorylation. , 2019, Cell reports.

[20]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[21]  A. D’Alessandro,et al.  Targeting Glutamine Metabolism and Redox State for Leukemia Therapy , 2018, Clinical Cancer Research.

[22]  M. Albertella,et al.  The thymidine dideoxynucleoside analog, alovudine, inhibits the mitochondrial DNA polymerase γ, impairs oxidative phosphorylation and promotes monocytic differentiation in acute myeloid leukemia , 2018, Haematologica.

[23]  Austin E. Gillen,et al.  Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia , 2018, Nature Medicine.

[24]  M. Protopopova,et al.  An inhibitor of oxidative phosphorylation exploits cancer vulnerability , 2018, Nature Medicine.

[25]  M. Keating,et al.  Biological and metabolic effects of IACS-010759, an OxPhos inhibitor, on chronic lymphocytic leukemia cells , 2018, Oncotarget.

[26]  L. di Lisio,et al.  Glutaminolysis is a metabolic dependency in FLT3ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition. , 2018, Blood.

[27]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[28]  Rosana Pelayo,et al.  T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. , 2017, Blood reviews.

[29]  Eyal Gottlieb,et al.  Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemic stem cells , 2017, Nature Medicine.

[30]  W. Bolosky,et al.  Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies , 2017, Proceedings of the National Academy of Sciences.

[31]  Phillip G. Montgomery,et al.  Defining a Cancer Dependency Map , 2017, Cell.

[32]  Ann E. Sizemore,et al.  Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells , 2017, Nature Genetics.

[33]  Cheng Cheng,et al.  THE GENOMIC LANDSCAPE OF PEDIATRIC AND YOUNG ADULT T-LINEAGE ACUTE LYMPHOBLASTIC LEUKEMIA , 2017, Nature Genetics.

[34]  Sara M. Nowinski,et al.  The early metabolomic response of adipose tissue during acute cold exposure in mice , 2017, Scientific Reports.

[35]  Achinto Saha,et al.  Combinatorial treatment with natural compounds in prostate cancer inhibits prostate tumor growth and leads to key modulations of cancer cell metabolism , 2017, npj Precision Oncology.

[36]  P. Zandstra,et al.  Progenitor T-cell differentiation from hematopoietic stem cells using Delta-like-4 and VCAM-1 , 2017, Nature Methods.

[37]  A. Ferrando,et al.  The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. , 2017, Blood.

[38]  G. Qing,et al.  DEPTOR is a direct NOTCH1 target that promotes cell proliferation and survival in T-cell leukemia , 2017, Oncogene.

[39]  J. Aster,et al.  High selective pressure for Notch1 mutations that induce Myc in T-cell acute lymphoblastic leukemia. , 2016, Blood.

[40]  A. Ferrando,et al.  The genetics and mechanisms of T cell acute lymphoblastic leukaemia , 2016, Nature Reviews Cancer.

[41]  Dennis Wang,et al.  Combenefit: an interactive platform for the analysis and visualization of drug combinations , 2016, Bioinform..

[42]  C. Borner,et al.  The clerodane diterpene casearin J induces apoptosis of T-ALL cells through SERCA inhibition, oxidative stress, and interference with Notch1 signaling , 2016, Cell Death and Disease.

[43]  S. Demo,et al.  Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. , 2015, Blood.

[44]  R. Deberardinis,et al.  Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia , 2015, Nature Medicine.

[45]  Sean C. Bendall,et al.  Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis , 2015, Cell.

[46]  D. Sabatini,et al.  An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis , 2015, Cell.

[47]  A. Weng,et al.  Leukemia stem cells in T-ALL require active Hif1α and Wnt signaling. , 2015, Blood.

[48]  Hoang Q. Nguyen,et al.  Phase I/II study of the hypoxia-activated prodrug PR104 in refractory/relapsed acute myeloid leukemia and acute lymphoblastic leukemia , 2015, Haematologica.

[49]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[50]  A. Look,et al.  Targeting oncogenic interleukin‐7 receptor signalling with N‐acetylcysteine in T cell acute lymphoblastic leukaemia , 2015, British journal of haematology.

[51]  R. Deberardinis,et al.  Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia , 2015 .

[52]  T. Hoang,et al.  SCL, LMO1 and Notch1 Reprogram Thymocytes into Self-Renewing Cells , 2014, PLoS genetics.

[53]  T. Finkel,et al.  Cellular mechanisms and physiological consequences of redox-dependent signalling , 2014, Nature Reviews Molecular Cell Biology.

[54]  E. Larsson,et al.  Antioxidants Accelerate Lung Cancer Progression in Mice , 2014, Science Translational Medicine.

[55]  Thomas M. Wasylenko,et al.  Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells , 2013, Nature Communications.

[56]  A. Ferrando,et al.  The Ubiquitin Ligase FBXW7 Modulates Leukemia-Initiating Cell Activity by Regulating MYC Stability , 2013, Cell.

[57]  G. Nolan,et al.  The transcriptional landscape of αβ T cell differentiation , 2013, Nature Immunology.

[58]  John M. Ashton,et al.  BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. , 2013, Cell stem cell.

[59]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[60]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[61]  R. Lock,et al.  Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts , 2012, PloS one.

[62]  Christian M. Metallo,et al.  Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia , 2011, Nature.

[63]  J. Aster,et al.  Notch1 inhibition targets the leukemia-initiating cells in a Tal1/Lmo2 mouse model of T-ALL. , 2011, Blood.

[64]  Jonathan Schug,et al.  Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells , 2011, Proceedings of the National Academy of Sciences.

[65]  T. Hoang,et al.  Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. , 2010, Genes & development.

[66]  A. Ferrando,et al.  Therapeutic targeting of NOTCH1 signaling in T-cell acute lymphoblastic leukemia. , 2009, Clinical lymphoma & myeloma.

[67]  Robert Gentleman,et al.  flowCore: a Bioconductor package for high throughput flow cytometry , 2009, BMC Bioinformatics.

[68]  A. Gedman,et al.  The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T- cell acute lymphoblastic leukemia: A report from the Children's Oncology Group , 2009, Leukemia.

[69]  A. Protopopov,et al.  Oncogenesis of T-ALL and nonmalignant consequences of overexpressing intracellular NOTCH1 , 2008, The Journal of experimental medicine.

[70]  Mark R Viant,et al.  Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. , 2008, Analytical biochemistry.

[71]  Peer Bork,et al.  KEGG Atlas mapping for global analysis of metabolic pathways , 2008, Nucleic Acids Res..

[72]  R. Lock,et al.  Activity of vincristine, L-ASP, and dexamethasone against acute lymphoblastic leukemia is enhanced by the BH3-mimetic ABT-737 in vitro and in vivo. , 2007, Blood.

[73]  Nigel W. Hardy,et al.  Proposed minimum reporting standards for chemical analysis , 2007, Metabolomics.

[74]  Ying Zhang,et al.  HMDB: the Human Metabolome Database , 2007, Nucleic Acids Res..

[75]  A. Ferrando,et al.  Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. , 2004, Blood.

[76]  Y. Benjamini,et al.  Controlling the false discovery rate in behavior genetics research , 2001, Behavioural Brain Research.