Tracking the origin of metasomatic and ore-forming fluids in IOCG deposits through apatite geochemistry (Nautanen North deposit, Norrbotten, Sweden)

[1]  R. Skirrow Iron oxide copper-gold (IOCG) deposits – a review (part 1): settings, mineralogy, ore geochemistry, and classification , 2021, Ore Geology Reviews.

[2]  A. Williams-Jones,et al.  Chlorine isotope fractionation during serpentinization and hydrothermal mineralization: A density functional theory study , 2021 .

[3]  T. M. Rasmussen,et al.  Towards an understanding of mineral systems – Contributions from magnetotelluric data from the Fennoscandian Shield in northern Sweden , 2021 .

[4]  C. Wanhainen,et al.  Timing and origin of the host rocks to the Malmberget iron oxide-apatite deposit, Sweden , 2020, Precambrian Research.

[5]  J. Andersson,et al.  Evolution of structures and hydrothermal alteration in a Palaeoproterozoic supracrustal belt: Constraining paired deformation–fluid flow events in an Fe and Cu–Au prospective terrain in northern Sweden , 2020 .

[6]  S. Chalov,et al.  Disproportionate Water Quality Impacts from the Century-Old Nautanen Copper Mines, Northern Sweden , 2020, Sustainability.

[7]  R. Wirth,et al.  Chlorine Isotope Composition of Apatite from the >3.7 Ga Isua Supracrustal Belt, SW Greenland , 2019 .

[8]  M. Whitehouse,et al.  Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden , 2019, Geochimica et Cosmochimica Acta.

[9]  C. Wanhainen,et al.  Character and tectonic setting of plutonic rocks in the Gällivare area, northern Norrbotten, Sweden , 2018, GFF.

[10]  C. Kirkland,et al.  Apatite: a U-Pb thermochronometer or geochronometer? , 2018, Lithos.

[11]  S. Glorie,et al.  Geology, Apatite Geochronology, and Geochemistry of the Ernest Henry Inter-Lens: Implications for a Re-Examined Deposit Model , 2018, Minerals.

[12]  M. Boiron,et al.  Variscan Sb-Au mineralization in Central Brittany (France): A new metallogenic model derived from the Le Semnon district , 2018, Ore Geology Reviews.

[13]  D. Garbe‐Schönberg,et al.  Combined LA-ICP-MS microanalysis of iodine, bromine and chlorine in fluid inclusions , 2018 .

[14]  P. Vermeesch IsoplotR: A free and open toolbox for geochronology , 2018, Geoscience Frontiers.

[15]  J. Andersson,et al.  Structural Controls on the Setting, Shape, and Hydrothermal Alteration of the Malmberget Iron Oxide-Apatite Deposit, Northern Sweden , 2018 .

[16]  S. Alirezaei,et al.  Multiple Stage Ore Formation in the Chadormalu Iron Deposit, Bafq Metallogenic Province, Central Iran: Evidence from BSE Imaging and Apatite EPMA and LA-ICP-MS U-Pb Geochronology , 2018 .

[17]  M. Reich,et al.  Kiruna-Type Iron Oxide-Apatite (IOA) and Iron Oxide Copper-Gold (IOCG) Deposits Form by a Combination of Igneous and Magmatic-Hydrothermal Processes: Evidence from the Chilean Iron Belt , 2018 .

[18]  R. Bodnar,et al.  Halogen Geochemistry of Ore Deposits: Contributions Towards Understanding Sources and Processes , 2018 .

[19]  Martin P Smith,et al.  Metal source and tectonic setting of iron oxide-copper-gold (IOCG) deposits: Evidence from an in situ Nd isotope study of titanite from Norrbotten, Sweden , 2017 .

[20]  J. Snape,et al.  Halogen and Cl isotopic systematics in Martian phosphates: Implications for the Cl cycle and surface halogen reservoirs on Mars , 2017 .

[21]  N. Cook,et al.  Apatite at Olympic Dam, South Australia: A petrogenetic tool , 2016 .

[22]  N. Cogné,et al.  (LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards , 2016 .

[23]  C. Wanhainen,et al.  Metallogeny of the Northern Norrbotten Ore Province, northern Fennoscandian Shield with emphasis on IOCG and apatite-iron ore deposits , 2016 .

[24]  C. Hart,et al.  Hydrothermal Alteration Revealed by Apatite Luminescence and Chemistry: A Potential Indicator Mineral for Exploring Covered Porphyry Copper Deposits , 2016 .

[25]  L. A. Coogan,et al.  Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration , 2016 .

[26]  A. Putnis,et al.  Distribution of halogens between fluid and apatite during fluid-mediated replacement processes , 2015 .

[27]  Jieun Seo,et al.  A new genetic model for the Triassic Yangyang iron-oxide–apatite deposit, South Korea: Constraints from in situ U–Pb and trace element analyses of accessory minerals , 2015 .

[28]  M. Whitehouse,et al.  Apatite as probe for the halogen composition of metamorphic fluids (Bamble Sector, SE Norway) , 2015, Contributions to Mineralogy and Petrology.

[29]  J. Webster,et al.  Magmatic Apatite: A Powerful, Yet Deceptive, Mineral , 2015 .

[30]  D. Chew,et al.  Geochronology and Thermochronology Using Apatite: Time and Temperature, Lower Crust to Surface , 2015 .

[31]  D. Harlov Apatite: A Fingerprint for Metasomatic Processes , 2015 .

[32]  M. Cathelineau,et al.  Noble gases (Ar, Kr, Xe) and halogens (Cl, Br, I) in fluid inclusions from the Athabasca Basin (Canada): Implications for unconformity-related U deposits , 2014 .

[33]  B. Kamber,et al.  U-Pb LA-ICPMS dating using accessory mineral standards with variable common Pb , 2014 .

[34]  C. Heinrich,et al.  Fluids and Ore Formation in the Earth's Crust , 2014 .

[35]  B. Yardley,et al.  Hydrothermal fluid evolution and metal transport in the Kiruna District, Sweden: contrasting metal behaviour in aqueous and aqueous-carbonic brines , 2013 .

[36]  C. Wanhainen,et al.  Modification of a Palaeoproterozoic porphyry-like system: Integration of structural, geochemical, petrographic, and fluid inclusion data from the Aitik Cu–Au–Ag deposit, northern Sweden , 2012 .

[37]  D. Harlov,et al.  Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens , 2012 .

[38]  G. Gehrels,et al.  Routine low‐damage apatite U‐Pb dating using laser ablation–multicollector–ICPMS , 2012 .

[39]  G. Eby,et al.  The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: An integrated analytical approach , 2012 .

[40]  D. Günther,et al.  Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines , 2011 .

[41]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[42]  D. Groves,et al.  Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits , 2010 .

[43]  Patrick J. Williams,et al.  Sources of ore fluid components in IOCG deposits , 2010 .

[44]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[45]  Martin P Smith,et al.  In situ U-Pb and trace element analysis of accessory minerals in the Kiruna District, Norrbotten, Sweden: new constraints on the timing and origin of mineralization , 2009 .

[46]  Martin P Smith,et al.  The sources and evolution of mineralising fluids in iron oxide–copper–gold systems, Norrbotten, Sweden: Constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates , 2009 .

[47]  L. Wassenaar,et al.  Cl/Br ratios and stable chlorine isotope analysis of magmatic–hydrothermal fluid inclusions from Butte, Montana and Bingham Canyon, Utah , 2009 .

[48]  Martin P Smith,et al.  In situ LA-ICP-MS U–Pb dating of metavolcanics of Norrbotten, Sweden: records of extended geological histories in complex titanite grains , 2007 .

[49]  Geordie Mark,et al.  Mid-crustal fluid mixing in a Proterozoic Fe oxide–Cu–Au deposit, Ernest Henry, Australia: Evidence from Ar, Kr, Xe, Cl, Br, and I , 2007 .

[50]  JonN C. SronnnnR,et al.  Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis , 2007 .

[51]  R. Cliff,et al.  Origin of fluids in iron oxide–copper–gold deposits: constraints from δ37Cl, 87Sr/86Sri and Cl/Br , 2006 .

[52]  Peter J. Pollard,et al.  An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces , 2006 .

[53]  S. Bowring,et al.  U–Pb systematics of the McClure Mountain syenite: thermochronological constraints on the age of the 40Ar/39Ar standard MMhb , 2006 .

[54]  C. Wanhainen,et al.  160 Ma of magmatic/hydrothermal and metamorphic activity in the Gällivare area: Re–Os dating of molybdenite and U–Pb dating of titanite from the Aitik Cu–Au–Ag deposit, northern Sweden , 2005 .

[55]  M. Barton,et al.  Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin , 2005 .

[56]  M. Stewart,et al.  The Stable-Chlorine Isotope Compositions of Natural and Anthropogenic Materials , 2004 .

[57]  S. Bowring,et al.  Evaluation of Duluth Complex anorthositic series (AS3) zircon as a U-Pb geochronological standard: new high-precision isotope dilution thermal ionization mass spectrometry results , 2003 .

[58]  W. Griffin,et al.  Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type , 2002 .

[59]  P. Candela,et al.  Apatite in Igneous Systems , 2002 .

[60]  M. Pagel,et al.  Cathodoluminescence study of apatite crystals , 2001 .

[61]  R. Cliff,et al.  Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids , 2000 .

[62]  R. Romer UPb systematics of stilbite-bearing low-temperature mineral assemblages from the Malmberget iron ore, northern Sweden , 1996 .

[63]  M. Barton,et al.  Evaporitic-source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization , 1996 .

[64]  D. Günther,et al.  Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation , 1996 .

[65]  W. McDonough,et al.  The composition of the Earth , 1995 .

[66]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[67]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .