Fixed-Parameter Tractability of Satisfying Beyond the Number of Variables

We consider a CNF formula F as a multiset of clauses: F={c1,…,cm}. The set of variables of F will be denoted by V(F). Let BF denote the bipartite graph with partite sets V(F) and F and with an edge between v∈V(F) and c∈F if v∈c or $\bar{v} \in c$. The matching number ν(F) of F is the size of a maximum matching in BF. In our main result, we prove that the following parameterization of MaxSat (denoted by (ν(F)+k)-SAT) is fixed-parameter tractable: Given a formula F, decide whether we can satisfy at least ν(F)+k clauses in F, where k is the parameter.A formula F is called variable-matched if ν(F)=|V(F)|. Let δ(F)=|F|−|V(F)| and δ∗(F)=maxF′⊆Fδ(F′). Our main result implies fixed-parameter tractability of MaxSat parameterized by δ(F) for variable-matched formulas F; this complements related results of Kullmann (IEEE Conference on Computational Complexity, pp. 116–124, 2000) and Szeider (J. Comput. Syst. Sci. 69(4):656–674, 2004) for MaxSat parameterized by δ∗(F).To obtain our main result, we reduce (ν(F)+k)-SAT into the following parameterization of the Hitting Set problem (denoted by (m−k)-Hitting Set): given a collection $\mathcal{C}$ of m subsets of a ground set U of n elements, decide whether there is X⊆U such that C∩X≠∅ for each $C\in \mathcal{C}$ and |X|≤m−k, where k is the parameter. Gutin, Jones and Yeo (Theor. Comput. Sci. 412(41):5744–5751, 2011) proved that (m−k)-Hitting Set is fixed-parameter tractable by obtaining an exponential kernel for the problem. We obtain two algorithms for (m−k)-Hitting Set: a deterministic algorithm of runtime $O((2e)^{2k+O(\log^{2} k)} (m+n)^{O(1)})$ and a randomized algorithm of expected runtime $O(8^{k+O(\sqrt{k})} (m+n)^{O(1)})$. Our deterministic algorithm improves an algorithm that follows from the kernelization result of Gutin, Jones and Yeo (Theor. Comput. Sci. 412(41):5744–5751, 2011).

[1]  Hans Kleine Büning,et al.  On subclasses of minimal unsatisfiable formulas , 2000, Discret. Appl. Math..

[2]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[3]  Aravind Srinivasan,et al.  Improved approximations of packing and covering problems , 1995, STOC '95.

[4]  Stefan Szeider,et al.  Citation for Published Item: Use Policy Minimal Unsatisfiable Formulas with Bounded Clause-variable Difference Are Fixed-parameter Tractable , 2022 .

[5]  Nathan Linial,et al.  Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas , 1986, J. Comb. Theory, Ser. A.

[6]  Mark Jones,et al.  A new bound for 3-satisfiable MaxSat and its algorithmic application , 2013, Inf. Comput..

[7]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[8]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[9]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[10]  Stefan Szeider,et al.  Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference , 2002, Theor. Comput. Sci..

[11]  Christos H. Papadimitriou,et al.  The complexity of facets resolved , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[12]  Noga Alon,et al.  Solving MAX-r-SAT Above a Tight Lower Bound , 2010, SODA '10.

[13]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[14]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[15]  Meena Mahajan,et al.  Parameterizing above or below guaranteed values , 2009, J. Comput. Syst. Sci..

[16]  Gregory Gutin,et al.  A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and Its Algorithmic Applications , 2011, Algorithmica.

[17]  G. Hardy,et al.  Asymptotic formulae in combinatory analysis , 1918 .

[18]  Gregory Gutin,et al.  Kernels for below-upper-bound parameterizations of the hitting set and directed dominating set problems , 2010, Theor. Comput. Sci..

[19]  Oliver Kullmann,et al.  Lean clause-sets: generalizations of minimally unsatisfiable clause-sets , 2003, Discret. Appl. Math..

[20]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[21]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[22]  Fedor V. Fomin,et al.  Faster algorithms for finding and counting subgraphs , 2009, J. Comput. Syst. Sci..

[23]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[24]  Oliver Kullmann,et al.  An application of matroid theory to the SAT problem , 2000, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[25]  Noga Alon,et al.  Color-coding , 1995, JACM.

[26]  Hans Kleine Büning,et al.  Minimal Unsatisfiability and Autarkies , 2009, Handbook of Satisfiability.