Genetic Approaches to Axonemal Dynein Function in Chlamydomonas and Other Organisms

[1]  S. Dutcher,et al.  The awesome power of dikaryons for studying flagella and basal bodies in Chlamydomonas reinhardtii , 2014, Cytoskeleton.

[2]  M. Hirono,et al.  A conserved flagella-associated protein in Chlamydomonas, FAP234, is essential for axonemal localization of tubulin polyglutamylase TTLL9 , 2014, Molecular biology of the cell.

[3]  D. Mitchell,et al.  Chlamydomonas ODA10 is a conserved axonemal protein that plays a unique role in outer dynein arm assembly , 2013, Molecular biology of the cell.

[4]  Emily H Turner,et al.  Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. , 2013, American journal of human genetics.

[5]  M. Rosenfeld,et al.  Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia. , 2013, American journal of human genetics.

[6]  G. Church,et al.  Cas9 as a versatile tool for engineering biology , 2013, Nature Methods.

[7]  M. Rosenfeld,et al.  ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. , 2013, American journal of human genetics.

[8]  J. Lupski,et al.  ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. , 2013, American journal of human genetics.

[9]  Richard D Emes,et al.  Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. , 2013, American journal of human genetics.

[10]  H. Omran,et al.  DYX1C1 is required for axonemal dynein assembly and ciliary motility , 2013, Nature Genetics.

[11]  Shiaulou Yuan,et al.  Reptin/Ruvbl2 is a Lrrc6/Seahorse interactor essential for cilia motility , 2013, Proceedings of the National Academy of Sciences.

[12]  J. Kere,et al.  The Zebrafish Orthologue of the Dyslexia Candidate Gene DYX1C1 Is Essential for Cilia Growth and Function , 2013, PloS one.

[13]  S. Lindberg,et al.  The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans , 2013, Nature Genetics.

[14]  Emily H Turner,et al.  Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. , 2013, American journal of human genetics.

[15]  T. Kubo,et al.  Tubulin polyglutamylation regulates flagellar motility by controlling a specific inner‐arm dynein that interacts with the dynein regulatory complex , 2012, Cytoskeleton.

[16]  S. Amselem,et al.  Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. , 2012, American journal of human genetics.

[17]  Kate S. Wilson,et al.  Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. , 2012, American journal of human genetics.

[18]  M. Göpfert,et al.  Drosophila Auditory Organ Genes and Genetic Hearing Defects , 2012, Cell.

[19]  A. Schier,et al.  CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms , 2012, Nature Genetics.

[20]  J. Yates,et al.  Proteomic Analysis of Mammalian Primary Cilia , 2012, Current Biology.

[21]  H. Mussaffi,et al.  Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia , 2012, Nature Genetics.

[22]  W. Sale,et al.  bop5 mutations reveal new roles for the IC138 phosphoprotein in the regulation of flagellar motility and asymmetric waveforms , 2011, Molecular biology of the cell.

[23]  D. Nicastro,et al.  Building Blocks of the Nexin-Dynein Regulatory Complex in Chlamydomonas Flagella* , 2011, The Journal of Biological Chemistry.

[24]  P V Bayly,et al.  Propulsive forces on the flagellum during locomotion of Chlamydomonas reinhardtii. , 2011, Biophysical journal.

[25]  V. Sheffield,et al.  Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. , 2011, American journal of human genetics.

[26]  M. Hibi,et al.  Dynein axonemal intermediate chain 2 is required for formation of the left-right body axis and kidney in medaka. , 2010, Developmental biology.

[27]  R. Patel-King,et al.  An Outer Arm Dynein Conformational Switch Is Required for Metachronal Synchrony of Motile Cilia in Planaria , 2010, Molecular biology of the cell.

[28]  H. Takeda,et al.  Characterization of the medaka (Oryzias latipes) primary ciliary dyskinesia mutant, jaodori: Redundant and distinct roles of dynein axonemal intermediate chain 2 (dnai2) in motile cilia. , 2010, Developmental biology.

[29]  D. Mitchell,et al.  Oda16/Wdr69 is essential for axonemal dynein assembly and ciliary motility during zebrafish embryogenesis , 2010, Developmental dynamics : an official publication of the American Association of Anatomists.

[30]  M. Hirono,et al.  Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins , 2010, The Journal of cell biology.

[31]  I. Russell,et al.  The dynein–tubulin motor powers active oscillations and amplification in the hearing organ of the mosquito , 2010, Proceedings of the Royal Society B: Biological Sciences.

[32]  Maurice J. Kernan,et al.  Hearing in Drosophila Requires TilB, a Conserved Protein Associated With Ciliary Motility , 2010, Genetics.

[33]  Cynthia Y. He,et al.  A Comparative Proteomic Analysis Reveals a New Bi-Lobe Protein Required for Bi-Lobe Duplication and Cell Division in Trypanosoma brucei , 2010, PloS one.

[34]  M. Hirono,et al.  Tubulin Polyglutamylation Regulates Axonemal Motility by Modulating Activities of Inner-Arm Dyneins , 2010, Current Biology.

[35]  D. Nicastro,et al.  The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella , 2009, The Journal of cell biology.

[36]  S. Amselem,et al.  Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. , 2009, American journal of human genetics.

[37]  H. Zentgraf,et al.  Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. , 2009, American journal of human genetics.

[38]  W. Sale,et al.  A novel ankyrin-repeat protein interacts with the regulatory proteins of inner arm dynein f (I1) of Chlamydomonas reinhardtii. , 2009, Cell motility and the cytoskeleton.

[39]  R. Patel-King,et al.  An outer arm dynein light chain acts in a conformational switch for flagellar motility , 2009, The Journal of cell biology.

[40]  M. Blum,et al.  Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis. , 2009, Developmental biology.

[41]  W. Sale,et al.  IC138 defines a subdomain at the base of the I1 dynein that regulates microtubule sliding and flagellar motility. , 2009, Molecular biology of the cell.

[42]  W. Sale,et al.  IC97 is a novel intermediate chain of I1 dynein that interacts with tubulin and regulates interdoublet sliding. , 2009, Molecular biology of the cell.

[43]  R. Kamiya,et al.  Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella , 2009, Journal of Cell Science.

[44]  Maurice J. Kernan,et al.  An IFT-A Protein Is Required to Delimit Functionally Distinct Zones in Mechanosensory Cilia , 2008, Current Biology.

[45]  A. Miyawaki,et al.  Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins , 2008, Nature.

[46]  H. Mussaffi,et al.  DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. , 2008, American journal of human genetics.

[47]  D. Mitchell,et al.  ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery , 2008, The Journal of cell biology.

[48]  G. Pazour,et al.  Three members of the LC8/DYNLL family are required for outer arm dynein motor function. , 2008, Molecular biology of the cell.

[49]  H. Yatani,et al.  Molecular cloning of novel Monad binding protein containing tetratricopeptide repeat domains , 2008, FEBS letters.

[50]  E. Voest,et al.  LRRC50, a conserved ciliary protein implicated in polycystic kidney disease. , 2008, Journal of the American Society of Nephrology : JASN.

[51]  S. King,et al.  Partially Functional Outer-Arm Dynein in a Novel Chlamydomonas Mutant Expressing a Truncated γ Heavy Chain , 2008, Eukaryotic Cell.

[52]  D. Mitchell,et al.  Twenty-five dyneins in Tetrahymena: A re-examination of the multidynein hypothesis. , 2008, Cell motility and the cytoskeleton.

[53]  S. Thiberge,et al.  Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. , 2008, Developmental biology.

[54]  E. Barbar Dynein light chain LC8 is a dimerization hub essential in diverse protein networks. , 2008, Biochemistry.

[55]  R. Kamiya,et al.  Novel 44-Kilodalton Subunit of Axonemal Dynein Conserved from Chlamydomonas to Mammals , 2007, Eukaryotic Cell.

[56]  R. Hard,et al.  Targeted gene disruption of dynein heavy chain 7 of Tetrahymena thermophila results in altered ciliary waveform and reduced swim speed , 2007, Journal of Cell Science.

[57]  B. Wickstead,et al.  Dyneins Across Eukaryotes: A Comparative Genomic Analysis , 2007, Traffic.

[58]  K. Hill,et al.  Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement , 2007, Journal of Cell Science.

[59]  J. Rosenbaum,et al.  The lissencephaly protein Lis1 is present in motile mammalian cilia and requires outer arm dynein for targeting to Chlamydomonas flagella , 2007, Journal of Cell Science.

[60]  S. Amselem,et al.  A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia , 2007, Proceedings of the National Academy of Sciences.

[61]  G. Pazour,et al.  Functional analysis of an individual IFT protein: IFT46 is required for transport of outer dynein arms into flagella , 2007, The Journal of cell biology.

[62]  D. Mitchell,et al.  Chlamydomonas Flagellar Outer Row Dynein Assembly Protein Oda7 Interacts with Both Outer Row and I1 Inner Row Dyneins* , 2007, Journal of Biological Chemistry.

[63]  D. J. Asai,et al.  Dynein light chain family in Tetrahymena thermophila. , 2007, Cell motility and the cytoskeleton.

[64]  K. Hill,et al.  Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella , 2007, Journal of Cell Science.

[65]  R. Obar,et al.  Analysis of cytoskeletal and motility proteins in the sea urchin genome assembly. , 2006, Developmental biology.

[66]  R. Kamiya,et al.  A novel subunit of axonemal dynein conserved among lower and higher eukaryotes , 2006, FEBS letters.

[67]  Johanna Buisson,et al.  Conserved and specific functions of axoneme components in trypanosome motility , 2006, Journal of Cell Science.

[68]  M. Hirono,et al.  An Axonemal Dynein Particularly Important for Flagellar Movement at High Viscosity , 2005, Journal of Biological Chemistry.

[69]  G. Pazour,et al.  Differential light chain assembly influences outer arm dynein motor function. , 2005, Molecular biology of the cell.

[70]  T. Hennessey,et al.  Mutations in genes encoding inner arm dynein heavy chains in Tetrahymena thermophila lead to axonemal hypersensitivity to Ca2+. , 2005, Cell motility and the cytoskeleton.

[71]  D. Mitchell,et al.  ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly. , 2005, Molecular biology of the cell.

[72]  G. Pazour,et al.  Proteomic analysis of a eukaryotic cilium , 2005, The Journal of cell biology.

[73]  G. Pazour,et al.  Identification of predicted human outer dynein arm genes: candidates for primary ciliary dyskinesia genes , 2005, Journal of Medical Genetics.

[74]  D. Woolley,et al.  Further studies on knockout mice lacking a functional dynein heavy chain (MDHC7). 2. A developmental explanation for the asthenozoospermia. , 2005, Cell motility and the cytoskeleton.

[75]  D. Woolley,et al.  Further studies on knockout mice lacking a functional dynein heavy chain (MDHC7). 1. Evidence for a structural deficit in the axoneme. , 2005, Cell motility and the cytoskeleton.

[76]  N. Hirokawa,et al.  Mechanism of Nodal Flow: A Conserved Symmetry Breaking Event in Left-Right Axis Determination , 2005, Cell.

[77]  A. Schier,et al.  Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis , 2005, Development.

[78]  H. Yost,et al.  Kupffer's vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut , 2005, Development.

[79]  Triscia W. Hendrickson,et al.  IC138 is a WD-repeat dynein intermediate chain required for light chain assembly and regulation of flagellar bending. , 2004, Molecular biology of the cell.

[80]  R. Hard,et al.  Disruption of genes encoding predicted inner arm dynein heavy chains causes motility phenotypes in Tetrahymena. , 2004, Cell motility and the cytoskeleton.

[81]  G. Pazour,et al.  The LC7 light chains of Chlamydomonas flagellar dyneins interact with components required for both motor assembly and regulation. , 2004, Molecular biology of the cell.

[82]  N. Heintz,et al.  Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. , 2004, Human molecular genetics.

[83]  G. Pazour,et al.  Oda5p, a novel axonemal protein required for assembly of the outer dynein arm and an associated adenylate kinase. , 2004, Molecular biology of the cell.

[84]  G. Pazour,et al.  DC3, the 21-kDa subunit of the outer dynein arm-docking complex (ODA-DC), is a novel EF-hand protein important for assembly of both the outer arm and the ODA-DC. , 2003, Molecular biology of the cell.

[85]  M. Porter,et al.  A subunit of the dynein regulatory complex in Chlamydomonas is a homologue of a growth arrest–specific gene product , 2003, The Journal of cell biology.

[86]  M. Hirono,et al.  Expression of Conventional and Unconventional Actins in Chlamydomonas reinhardtii upon Deflagellation and Sexual Adhesion , 2003, Eukaryotic Cell.

[87]  P. Lefebvre,et al.  Molecular Map of the Chlamydomonas reinhardtii Nuclear Genome , 2003, Eukaryotic Cell.

[88]  M. Göpfert,et al.  Motion generation by Drosophila mechanosensory neurons , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[89]  R. Hard,et al.  Inner arm dynein 1 is essential for Ca++-dependent ciliary reversals in Tetrahymena thermophila. , 2002, Cell motility and the cytoskeleton.

[90]  Miguel Armengot,et al.  Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Y. Saijoh,et al.  Determination of left–right patterning of the mouse embryo by artificial nodal flow , 2002, Nature.

[92]  N. Heintz,et al.  Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. , 2002, Human molecular genetics.

[93]  C. Wilkerson,et al.  The outer dynein arm-docking complex: composition and characterization of a subunit (oda1) necessary for outer arm assembly. , 2002, Molecular biology of the cell.

[94]  H. Lehrach,et al.  Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left–right asymmetry , 2002, Nature Genetics.

[95]  R. Kamiya,et al.  Association between actin and light chains in Chlamydomonas flagellar inner-arm dyneins. , 2001, Biochemical and biophysical research communications.

[96]  S. Angus,et al.  Targeted gene knockout of inner arm 1 in Tetrahymena thermophila. , 2001, European journal of cell biology.

[97]  B. Habermann,et al.  Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. , 2001, Human molecular genetics.

[98]  J. Lafitte,et al.  Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). , 2001, American journal of human genetics.

[99]  E. O'Toole,et al.  Insights into the structural organization of the I1 inner arm dynein from a domain analysis of the 1beta dynein heavy chain. , 2000, Molecular biology of the cell.

[100]  D. Supp,et al.  Targeted deletion of the ATP binding domain of left-right dynein confirms its role in specifying development of left-right asymmetries. , 1999, Development.

[101]  S. Amselem,et al.  Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. , 1999, American journal of human genetics.

[102]  G. Pazour,et al.  LC2, the chlamydomonas homologue of the t complex-encoded protein Tctex2, is essential for outer dynein arm assembly. , 1999, Molecular biology of the cell.

[103]  E. O'Toole,et al.  Domains in the 1α Dynein Heavy Chain Required for Inner Arm Assembly and Flagellar Motility in Chlamydomonas , 1999, The Journal of cell biology.

[104]  R. Patel-King,et al.  Light chain 1 from the Chlamydomonas outer dynein arm is a leucine-rich repeat protein associated with the motor domain of the gamma heavy chain. , 1999, Biochemistry.

[105]  N. Hirokawa,et al.  Randomization of Left–Right Asymmetry due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein , 1998, Cell.

[106]  W. Sale,et al.  The Chlamydomonas IDA7 locus encodes a 140-kDa dynein intermediate chain required to assemble the I1 inner arm complex. , 1998, Molecular biology of the cell.

[107]  M. Fowkes,et al.  The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits. , 1998, Molecular biology of the cell.

[108]  G. Pazour,et al.  A Dynein Light Chain Is Essential for the Retrograde Particle Movement of Intraflagellar Transport (IFT) , 1998, The Journal of cell biology.

[109]  D. Supp,et al.  Mutation of an axonemal dynein affects left–right asymmetry in inversus viscerum mice , 1997, Nature.

[110]  G. Pazour,et al.  The Chlamydomonas reinhardtii ODA3 Gene Encodes a Protein of the Outer Dynein Arm Docking Complex , 1997, The Journal of cell biology.

[111]  M. Hirono,et al.  Chlamydomonas Inner-Arm Dynein Mutant, ida5, Has a Mutation in an Actin-encoding Gene , 1997, The Journal of cell biology.

[112]  E. O'Toole,et al.  The Chlamydomonas Dhc1 gene encodes a dynein heavy chain subunit required for assembly of the I1 inner arm complex. , 1997, Molecular biology of the cell.

[113]  E. O'Toole,et al.  The sup-pf-2 mutations of Chlamydomonas alter the activity of the outer dynein arms by modification of the gamma-dynein heavy chain , 1996, The Journal of cell biology.

[114]  A. Ogiwara,et al.  Is outer arm dynein intermediate chain 1 multifunctional? , 1996, Molecular biology of the cell.

[115]  M. Porter,et al.  The dynein gene family in Chlamydomonas reinhardtii. , 1996, Genetics.

[116]  R. Patel-King,et al.  Identification of a Ca(2+)-binding light chain within Chlamydomonas outer arm dynein. , 1995, Journal of cell science.

[117]  G. Piperno,et al.  ida4-1, ida4-2, and ida4-3 are intron splicing mutations affecting the locus encoding p28, a light chain of Chlamydomonas axonemal inner dynein arms. , 1995, Molecular biology of the cell.

[118]  SM King,et al.  The M(r) = 8,000 and 11,000 outer arm dynein light chains from Chlamydomonas flagella have cytoplasmic homologues , 1995, The Journal of Biological Chemistry.

[119]  G. Pazour,et al.  The 78,000 M(r) intermediate chain of Chlamydomonas outer arm dynein isa WD-repeat protein required for arm assembly , 1995, The Journal of cell biology.

[120]  E. O'Toole,et al.  Components of a "dynein regulatory complex" are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella , 1994, The Journal of cell biology.

[121]  S. Dutcher,et al.  Mutations in the SUP-PF-1 locus of Chlamydomonas reinhardtii identify a regulatory domain in the beta-dynein heavy chain , 1994, The Journal of cell biology.

[122]  E. O'Toole,et al.  The bop2-1 mutation reveals radial asymmetry in the inner dynein arm region of Chlamydomonas reinhardtii , 1994, The Journal of cell biology.

[123]  R. Kamiya,et al.  Functional reconstitution of Chlamydomonas outer dynein arms from alpha- beta and gamma subunits: requirement of a third factor , 1994, The Journal of cell biology.

[124]  D. Mitchell,et al.  Sequence analysis of the Chlamydomonas alpha and beta dynein heavy chain genes. , 1994, Journal of cell science.

[125]  C. Wilkerson,et al.  Molecular analysis of the gamma heavy chain of Chlamydomonas flagellar outer-arm dynein. , 1994, Journal of cell science.

[126]  R. Kamiya,et al.  Isolation of two species of Chlamydomonas reinhardtii flagellar mutants, ida5 and ida6, that lack a newly identified heavy chain of the inner dynein arm. , 1993, Cell structure and function.

[127]  P. Lefebvre,et al.  Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. , 1993, Genetics.

[128]  H. Sakakibara,et al.  A Chlamydomonas outer arm dynein mutant with a truncated beta heavy chain , 1993, The Journal of cell biology.

[129]  R. Kamiya,et al.  Translocation and rotation of microtubules caused by multiple species of Chlamydomonas inner-arm dynein , 1992 .

[130]  G. Piperno,et al.  The inner dynein arms I2 interact with a "dynein regulatory complex" in Chlamydomonas flagella , 1992, The Journal of cell biology.

[131]  S. Dutcher,et al.  Extragenic suppressors of paralyzed flagellar mutations in Chlamydomonas reinhardtii identify loci that alter the inner dynein arms , 1992, The Journal of cell biology.

[132]  D. Mitchell,et al.  Identification of oda6 as a Chlamydomonas dynein mutant by rescue with the wild-type gene , 1991, The Journal of cell biology.

[133]  H. Sakakibara,et al.  A Chlamydomonas outer arm dynein mutant missing the alpha heavy chain , 1991, The Journal of cell biology.

[134]  E. Kurimoto,et al.  Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein , 1991, The Journal of cell biology.

[135]  W. Sale,et al.  Three distinct inner dynein arms in Chlamydomonas flagella: molecular composition and location in the axoneme , 1990, The Journal of cell biology.

[136]  P. D’Eustachio,et al.  Linkage mapping of a mouse gene, iv, that controls left-right asymmetry of the heart and viscera. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[137]  R. Kamiya Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii , 1988, The Journal of cell biology.

[138]  J. Rosenbaum,et al.  A motile Chlamydomonas flagellar mutant that lacks outer dynein arms , 1985, The Journal of cell biology.

[139]  R. Kamiya,et al.  A mutant of Chlamydomonas reinhardtii that lacks the flagellar outer dynein arm but can swim. , 1985, Journal of cell science.

[140]  D. Luck,et al.  Suppressor mutations in chlamydomonas reveal a regulatory mechanism for flagellar function , 1982, Cell.

[141]  G. Piperno,et al.  Radial spokes of Chlamydomonas flagella: genetic analysis of assembly and function , 1981, The Journal of cell biology.

[142]  G. Piperno,et al.  Paralyzed flagella mutants of Chlamydomonas reinhardtii. Defective for axonemal doublet microtubule arms. , 1979, The Journal of biological chemistry.

[143]  G. Piperno,et al.  Axonemal adenosine triphosphatases from flagella of Chlamydomonas reinhardtii. Purification of two dyneins. , 1979, The Journal of biological chemistry.

[144]  G. Piperno,et al.  An actin-like protein is a component of axonemes from Chlamydomonas flagella. , 1979, The Journal of biological chemistry.

[145]  B. Afzelius A human syndrome caused by immotile cilia. , 1976, Science.

[146]  H. Rebbe,et al.  Absence of arms in the axoneme of immobile human spermatozoa. , 1975, Biology of reproduction.

[147]  Y. Naitoh,et al.  Reactivated Triton-Extracted Models of Paramecium: Modification of Ciliary Movement by Calcium Ions , 1972, Science.

[148]  R. Eckert,et al.  Ionic Mechanisms Controlling Behavioral Responses of Paramecium to Mechanical Stimulation , 1969, Science.

[149]  R. Lewin Mutants of Chlamydomonas moewusii with impaired motility. , 1954, Journal of general microbiology.

[150]  W. Marshall,et al.  Analysis of ciliary assembly and function in planaria. , 2013, Methods in enzymology.

[151]  N. Rosenthal,et al.  Silencing of a putative inner arm dynein heavy chain results in flagellar immotility in Trypanosoma brucei. , 2011, Molecular and biochemical parasitology.

[152]  S. King,et al.  Axonemal Dyneins: Assembly, Structure, and Force Generation , 2009 .

[153]  Alicia N. Schep,et al.  Identification and characterization of dynein genes in Tetrahymena. , 2009, Methods in cell biology.

[154]  R. Kamiya Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. , 2002, International review of cytology.

[155]  D. Mitchell,et al.  Sequence analysis of theChlamydomonas reinhardtii flagellar a dynein gene , 1997 .

[156]  R. Kamiya Selection of Chlamydomonas dynein mutants. , 1991, Methods in enzymology.

[157]  C. Brokaw,et al.  Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. , 1987, Cell motility and the cytoskeleton.

[158]  G. Witman,et al.  Purification and polypeptide composition of dynein ATPases from Chlamydomonas flagella. , 1982, Cell motility.