Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol

[1]  Jong‐Heun Lee,et al.  Co-doped branched ZnO nanowires for ultraselective and sensitive detection of xylene. , 2014, ACS applied materials & interfaces.

[2]  M. A. Malik,et al.  Effects of Mg doping on optical and CO gas sensing properties of sensitive ZnO nanobelts , 2014 .

[3]  Il-Doo Kim,et al.  Selective, sensitive, and reversible detection of H2S using Mo-doped ZnO nanowire network sensors , 2014 .

[4]  Il-Doo Kim,et al.  Electronic sensitization of the response to C2H5OH of p-type NiO nanofibers by Fe doping , 2013, Nanotechnology.

[5]  Jong‐Heun Lee,et al.  Transformation of ZnO nanobelts into single-crystalline Mn3O4 nanowires. , 2012, ACS applied materials & interfaces.

[6]  K. S. Hui,et al.  Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires , 2012 .

[7]  Chan Woong Na,et al.  Highly sensitive and selective trimethylamine sensor using one-dimensional ZnO–Cr2O3 hetero-nanostructures , 2012, Nanotechnology.

[8]  Shoumin Zhang,et al.  ZnO nanorod gas sensor for ethanol detection , 2012 .

[9]  R. S. Tiwari,et al.  Structural and hydrogenation studies of ZnO and Mg doped ZnO nanowires , 2012 .

[10]  Chan Woong Na,et al.  Design of highly sensitive volatile organic compound sensors by controlling NiO loading on ZnO nanowire networks , 2012 .

[11]  Changhyun Jin,et al.  H2S gas sensing properties of bare and Pd-functionalized CuO nanorods , 2012 .

[12]  B. Pan,et al.  An empirical law for the band gaps of MgZnO nanowires , 2011 .

[13]  T. Seong,et al.  Facile control of C₂H₅OH sensing characteristics by decorating discrete Ag nanoclusters on SnO₂ nanowire networks. , 2011, ACS applied materials & interfaces.

[14]  Chan Woong Na,et al.  Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor. , 2011, Chemical communications.

[15]  Shaomin Liu,et al.  Synthesis and optical property of one-dimensional spinel ZnMn2O4 nanorods , 2011, Nanoscale research letters.

[16]  Jong‐Heun Lee,et al.  Gas Sensors Using Oxide Nanowire Networks: An Overview , 2011 .

[17]  Pengcheng Xu,et al.  Decoration of ZnO nanowires with Pt nanoparticles and their improved gas sensing and photocatalytic performance , 2010, Nanotechnology.

[18]  T. Fang,et al.  Preparation and characterization of Mg-doped ZnO nanorods , 2010 .

[19]  Byeong Kwon Ju,et al.  Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO , 2009 .

[20]  Rakesh K. Joshi,et al.  Au Decorated Zinc Oxide Nanowires for CO Sensing , 2009 .

[21]  Wan‐Yu Wu,et al.  Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection , 2009, Nanoscale research letters.

[22]  J. Song,et al.  Fabrication of Mg-doped ZnO thin films by laser ablation of Zn:Mg target , 2009 .

[23]  Byeong Kwon Ju,et al.  A facile fabrication of semiconductor nanowires gas sensor using PDMS patterning and solution deposition , 2009 .

[24]  Davinder Kaur,et al.  Effect of Mg content on structural, electrical and optical properties of Zn1−xMgxO nanocomposite thin films , 2009 .

[25]  J. Son,et al.  Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor , 2008 .

[26]  Yuan Zhang,et al.  Studies on alcohol sensing mechanism of ZnO based gas sensors , 2008 .

[27]  S. Choopun,et al.  Ethanol sensor based on ZnO and Au-doped ZnO nanowires , 2008 .

[28]  Joachim Goschnick,et al.  A gradient microarray electronic nose based on percolating SnO(2) nanowire sensing elements. , 2007, Nano letters.

[29]  I-Cherng Chen,et al.  Laterally grown ZnO nanowire ethanol gas sensors , 2007 .

[30]  J. C. Chadwick,et al.  Introducing a new surface science model for Ziegler-Natta catalysts : preparation, basic characterization and testing , 2007 .

[31]  N. Yamazoe,et al.  C2H4O sensing properties for thick film sensor using La2O3-modified SnO2 , 2006 .

[32]  S. R. C. Vivekchand,et al.  Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes , 2006 .

[33]  Dmitri O. Klenov,et al.  Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. , 2005, Nano letters.

[34]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[35]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[36]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[37]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[38]  Yong Ding,et al.  Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO. , 2004, Journal of the American Chemical Society.

[39]  Zhong Lin Wang,et al.  Crystallographic Orientation-Aligned ZnO Nanorods Grown by a Tin Catalyst , 2003 .

[40]  Takashi Minemoto,et al.  Preparation of Zn1−xMgxO films by radio frequency magnetron sputtering , 2000 .

[41]  Norio Miura,et al.  Relationship between ethanol gas sensitivity and surface catalytic property of tin oxide sensors modified with acidic or basic oxides , 2000 .

[42]  H. Koinuma,et al.  Thermal stability of supersaturated MgxZn1−xO alloy films and MgxZn1−xO/ZnO heterointerfaces , 1999 .

[43]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[44]  E. Segnit,et al.  The System MgO‐ZnO‐SiO2 , 1965 .

[45]  Matteo Ferroni,et al.  Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors , 2009 .