Some recent trends in the fabrication, functionalisation and characterisation of metal oxide nanowire gas sensors

Due to strong interdependence of the electron transport and surface processes in quasi 1-D metal oxide nanostructures, chemiresistors and field effect transistors (FETs) based on nanowires perform excellently as sensing elements and may be able to compete with traditional thin film sensors in the field of solid state sensorics. Namely, applications requiring a stable, reproducible sensing element of small size with sensitive performance will benefit from this new platform. In this report, a few recent trends in the fabrication, functionalisation and characterisation of quasi 1-D metal oxide nanowire sensors are reviewed.

[1]  A. Kolmakov,et al.  Encoding morphology in oxide nanostructures during their growth. , 2005, Nano letters.

[2]  Erica R Thaler,et al.  Medical applications of electronic nose technology , 2005, Expert review of medical devices.

[3]  Daihua Zhang,et al.  In2O3 nanowires as chemical sensors , 2003 .

[4]  S. Semancik,et al.  Chemical and electronic properties of Pd/SnO2(110) model gas sensors , 1989 .

[5]  David E. Williams,et al.  Tin dioxide gas sensors. Part 1.—Aspects of the surface chemistry revealed by electrical conductance variations , 1987 .

[6]  Reginald M. Penner,et al.  Amine Vapor Sensing with Silver Mesowires , 2004 .

[7]  Victor V. Sysoev,et al.  Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray , 2004, Sensors (Basel, Switzerland).

[8]  Giorgio Sberveglieri,et al.  Novel Materials and Applications of Electronic Noses and Tongues , 2004, MRS bulletin.

[9]  Dmitri O. Klenov,et al.  Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. , 2005, Nano letters.

[10]  G. Sberveglieri,et al.  Electronic Olfactory Systems Based on Metal Oxide Semiconductor Sensor Arrays , 2004 .

[11]  J. Suehle,et al.  Microhotplate Platforms for Chemical Sensor Research , 2001 .

[12]  Zhiyong Fan,et al.  Gate-refreshable nanowire chemical sensors , 2005 .

[13]  M. Kiskinova,et al.  Artefact formation in scanning photoelectron emission microscopy , 1998 .

[14]  K. Persaud,et al.  Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose , 1982, Nature.

[15]  Wolfgang Göpel Nanostructured Sensors for Molecular Recognition , 1995 .

[16]  Joachim Goschnick,et al.  A gradient microarray electronic nose based on percolating SnO(2) nanowire sensing elements. , 2007, Nano letters.

[17]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[18]  D. Kohl The role of noble metals in the chemistry of solid-state gas sensors , 1990 .

[19]  S. Hoenig,et al.  Chemisorption of oxygen on zinc oxide, effect of a dc electric field☆ , 1968 .

[20]  M. Girasole,et al.  Spectromicroscope for the PHotoelectron Imaging of Nanostructures with X-rays (SPHINX): performance in biology, medicine and geology. , 2004, Ultramicroscopy.

[21]  Giorgio Sberveglieri,et al.  Recent developments in semiconducting thin-film gas sensors , 1995 .

[22]  R. Cavicchi,et al.  Rapid Identié cation of Chemical Warfare Agents by Artié cial Neural Network Pruning of Temperature-Programmed Microsensor Databases , 2003 .

[23]  S. J. Pearton,et al.  ZnO spintronics and nanowire devices , 2006 .

[24]  K. H. Chen,et al.  Electronic structure of the carbon nanotube tips studied by x-ray-absorption spectroscopy and scanning photoelectron microscopy , 2002 .

[25]  P. T. Moseley,et al.  Materials selection for semiconductor gas sensors , 1992 .

[26]  Peidong Yang,et al.  Photochemical sensing of NO(2) with SnO(2) nanoribbon nanosensors at room temperature. , 2002, Angewandte Chemie.

[27]  A. Kolmakov,et al.  Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. , 2005, The journal of physical chemistry. B.

[28]  Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device , 2005, cond-mat/0506621.

[29]  Theodor Doll,et al.  Field-effect-induced gas sensitivity changes in metal oxides , 1997 .

[30]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[31]  David P. Norton,et al.  Hydrogen and ozone gas sensing using multiple ZnO nanorods , 2005 .

[32]  Zhong Lin Wang New Developments in Transmission Electron Microscopy for Nanotechnology , 2003 .

[33]  Zhong Lin Wang,et al.  Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks , 2006 .

[34]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[35]  Phaedon Avouris,et al.  Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts , 2003 .

[36]  Nathan S. Lewis,et al.  Chemiresistors for Array-Based Vapor Sensing Using Composites of Carbon Black with Low Volatility Organic Molecules , 2006 .

[37]  Richard Axel The molecular logic of smell. , 1995 .

[38]  Giorgio Sberveglieri,et al.  Light enhanced gas sensing properties of indium oxide and tin dioxide sensors , 2000 .

[39]  Jenshan Lin,et al.  Hydrogen-selective sensing at room temperature with ZnO nanorods , 2005 .

[40]  Julian W. Gardner,et al.  Electronic noses: a review of signal processing techniques , 1999 .

[41]  J. Goschnick,et al.  An electronic nose for intelligent consumer products based on a gas analytical gradient microarray , 2001 .

[42]  C. Hsu,et al.  Electronic structure of GaN nanowire studied by x-ray-absorption spectroscopy and scanning photoelectron microscopy , 2003 .

[43]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[44]  Peidong Yang,et al.  ZnO nanowire transistors. , 2005, The journal of physical chemistry. B.

[45]  A. Kolmakov,et al.  Toward the nanoscopic "electronic nose": hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. , 2006, Nano letters.

[46]  P. Moseley,et al.  Solid state gas sensors , 1997 .

[47]  V. Kiselev,et al.  Electronic Phenomena in Adsorption and Catalysis on Semiconductors and Dielectrics , 1987 .

[48]  A. Kolmakov Imaging reveals working nanodevices' topology and electronic processes , 2006 .

[49]  Satoru Suzuki,et al.  Observation of single-walled carbon nanotubes by photoemission microscopy , 2004 .

[50]  Ian H. Stevenson,et al.  Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles , 2006 .

[51]  Wolfgang Göpel,et al.  Nanosensors and molecular recognition , 1996 .

[52]  C. Li,et al.  Chemical gating of In2O3 nanowires by organic and biomolecules , 2003 .

[53]  Julian W. Gardner,et al.  A brief history of electronic noses , 1994 .

[54]  Martin Moskovits,et al.  Nanoengineered chemiresistors: the interplay between electron transport and chemisorption properties of morphologically encoded SnO2 nanowires , 2007 .

[55]  A. Kolmakov,et al.  The effect of morphology and surface doping on sensitization of quasi-1D metal oxide nanowire gas sensors , 2006, SPIE Optics East.

[56]  Martin Moskovits,et al.  Control of Catalytic Reactions at the Surface of a Metal Oxide Nanowire by Manipulating Electron Density Inside It , 2004 .

[57]  Satoru Suzuki,et al.  Electronic structure of carbon nanotubes studied by photoelectron spectromicroscopy , 2002 .

[58]  T. Pearce Computational parallels between the biological olfactory pathway and its analogue 'the electronic nose': Part I. Biological olfaction. , 1997, Bio Systems.

[59]  Ophir Vermesh,et al.  Hysteresis caused by water molecules in carbon nanotube field-effect transistors , 2003 .

[60]  Z. Wang Nanobelts, Nanowires, and Nanodiskettes of Semiconducting Oxides—From Materials to Nanodevices , 2003 .

[61]  T. Wolkenstein,et al.  Electronic Processes on Semiconductor Surfaces during Chemisorption , 1991 .

[62]  Joan Ramon Morante,et al.  Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances , 2001 .

[63]  Noboru Yamazoe,et al.  Effects of additives on semiconductor gas sensors , 1983 .

[64]  T. Chuang,et al.  Electronic structure of aligned carbon nanotubes studied by scanning photoelectron microscopy , 2003 .

[65]  G. Korotcenkov Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches , 2005 .

[66]  Zhiyong Fan,et al.  Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications , 2006 .

[67]  Choongho Yu,et al.  Integration of metal oxide nanobelts with microsystems for nerve agent detection , 2005 .

[68]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[69]  Q. Wan,et al.  Abnormal temperature dependence of conductance of single Cd-doped ZnO nanowires , 2005 .

[70]  Satoru Suzuki,et al.  Extremely small diffusion constant of Cs in multiwalled carbon nanotubes , 2002 .

[71]  M Graf,et al.  Micro hot plate-based sensor array system for the detection of environmentally relevant gases. , 2006, Analytical chemistry.

[72]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[73]  Sergei V. Kalinin,et al.  Application of spectromicroscopy tools to explore local origins of sensor activity in quasi-1D oxide nanostructures , 2006, Nanotechnology.

[74]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[75]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[76]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[77]  M. Kiskinova,et al.  Photoelectron microscopy and applications in surface and materials science , 2002 .

[78]  A. Goldoni,et al.  The electronic properties of carbon nanotubes studied by high resolution photoemission spectroscopy , 2005 .

[79]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.