Noda iterations for generalized eigenproblems following Perron-Frobenius theory

In this paper, we investigate the generalized eigenvalue problem Ax = λBx arising from economic models. Under certain conditions, there is a simple generalized eigenvalue ρ(A, B) in the interval (0, 1) with a positive eigenvector. Based on the Noda iteration, a modified Noda iteration (MNI) and a generalized Noda iteration (GNI) are proposed for finding the generalized eigenvalue ρ(A, B) and the associated unit positive eigenvector. It is proved that the GNI method always converges and has a quadratic asymptotic convergence rate. So GNI has a similar convergence behavior as MNI. The efficiency of these algorithms is illustrated by numerical examples.

[1]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[2]  Ludwig Elsner,et al.  Inverse iteration for calculating the spectral radius of a non-negative irreducible matrix , 1976 .

[3]  D. D. Olesky,et al.  Perron-frobenius theory for a generalized eigenproblem , 1995 .

[4]  T. Fujimoto,et al.  The Frobenius theorem, its Solow-Samuelson extension and the Kuhn-Tucker theorem , 1974 .

[5]  Ching-Sung Liu An inexact Noda iteration for computing the smallest eigenpair of a large irreducible monotone matrix , 2015, 1504.02197.

[6]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[7]  G. Stewart Matrix Algorithms, Volume II: Eigensystems , 2001 .

[8]  Xue Jungong Computing the Smallest Eigenvalue of an M-Matrix , 1996 .

[9]  Weizhang Huang,et al.  Sign-preserving of principal eigenfunctions in P1 finite element approximation of eigenvalue problems of second-order elliptic operators , 2013, J. Comput. Phys..

[10]  Chun-Hua Guo,et al.  A Positivity Preserving Inverse Iteration for Finding the Perron Pair of an Irreducible Nonnegative Third Order Tensor , 2016, SIAM J. Matrix Anal. Appl..

[11]  Takashi Noda,et al.  Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix , 1971 .

[12]  Jungong Xue Computing the Smallest Eigenvalue of an M-Matrix , 1996, SIAM J. Matrix Anal. Appl..

[13]  L. Pasinetti Essays on the Theory of Joint Production , 1980 .

[14]  P. Sraffa Production of commodities by means of commodities , 1960 .

[15]  藤本 喬雄 A Generalization of the Frobenius Theorem (菅原〔修〕教授退官記念号) , 1977 .

[16]  David W. Lewis,et al.  Matrix theory , 1991 .

[17]  Wen-Wei Lin,et al.  A positivity preserving inexact Noda iteration for computing the smallest eigenpair of a large irreducible $$M$$M-matrix , 2013, Numerische Mathematik.

[18]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[19]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[20]  P. Sraffa Production of Commodities by Means of Commodities: Prelude to a Critique of Economic Theory , 1960 .