A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography
暂无分享,去创建一个
[1] David Eugene Smith,et al. A source book in mathematics , 1930 .
[2] Mikhail G. Katz,et al. From discrete arithmetic to arithmetic of the continuum , 2013 .
[3] Abraham Robinson,et al. Nonstandard analysis and philosophy , 1979 .
[4] Charles Coulston Gillispie,et al. Dictionary of scientific biography , 1970 .
[5] F. B.,et al. The Concepts of the Calculus , 1939, Nature.
[6] The Metaphysics of the Calculus , 1967 .
[7] H. Billinge. Did Bishop Have a Philosophy of Mathematics , 2003 .
[8] Alexandre Borovik,et al. Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.
[9] Judith V. Grabiner,et al. The origins of Cauchy's rigorous calculus , 1981 .
[10] Herbert Breger. The mysteries of adaequare: A vindication of fermat , 1994 .
[11] Mikhail G. Katz,et al. Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.
[12] Philip Ehrlich,et al. The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.
[13] D. Laugwitz. Early delta functions and the use of infinitesimals in research , 1992 .
[14] W. Whewell,et al. The mathematical works , 1973 .
[15] David Tall,et al. The Psychology of Advanced Mathematical Thinking , 2002 .
[16] Solomon Feferman,et al. Relationships between Constructive, Predicative and Classical Systems of Analysis , 2000 .
[17] A. Heyting,et al. Intuitionism: An introduction , 1956 .
[18] R. Goldblatt. Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .
[19] Errett Bishop,et al. Mathematics as a Numerical Language , 1970 .
[20] Paul Bernays,et al. Natur und mathematisches Erkennen : Vorlesungen, gehalten 1919-1920 in Göttingen , 1992 .
[21] A. Robinson. Non-standard analysis , 1966 .
[22] Karin U. Katz,et al. When is .999... less than 1? , 2010, The Mathematics Enthusiast.
[23] Cauchy's conception of rigour in analysis , 1986 .
[24] Stewart Shapiro,et al. Structure and Ontology , 1989 .
[25] J. Stillwell. Yearning for the Impossible: The Surprising Truths of Mathematics , 2018 .
[26] Mikhail G. Katz,et al. Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.
[27] Geoffrey Hellman,et al. Mathematical Constructivism in Spacetime , 1998, The British Journal for the Philosophy of Science.
[28] Heinrich Rust. Operational Semantics for Timed Systems: A Non-standard Approach to Uniform Modeling of Timed and Hybrid Systems , 2005, Lecture Notes in Computer Science.
[29] Mitchell G. Reyes,et al. The rhetoric in mathematics: Newton, Leibniz, the calculus, and the rhetorical force of the infinitesimal , 2004 .
[30] D. Tall. Looking at graphs through infinitesimal microscopes, windows and telescopes , 1980, The Mathematical Gazette.
[31] The Role of Diagrams in Mathematical Arguments , 2008 .
[32] B. L. Waerden,et al. A history of algebra : from Al-Khwārizmī to Emmy Noether , 1985 .
[33] P. Wallis,et al. A Source Book in Mathematics, 1200-1800 , 1971, The Mathematical Gazette.
[34] Martin Davis,et al. Applied Nonstandard Analysis , 1977 .
[35] Augustin-Louis Cauchy. Oeuvres complètes: LEÇONS SUR LE CALCUL DIFFÉRENTIEL , 2009 .
[36] R. Hepburn,et al. BEING AND TIME , 2010 .
[37] Enrico Giusti. Les méthodes des maxima et minima de Fermat , 2009 .
[38] J. Bell. A primer of infinitesimal analysis , 1998 .
[39] Christoph J. Scriba,et al. B. L. van der Waerden: A History of Algebra. From al‐Khwarizmi to Emmy Noether. Berlin/Heidelberg/New York/Tokyo: Springer‐Verlag 1985. xi, 271 Seiten, 28 Figuren. Leinen, DM 98,‐. , 1987 .
[40] Anschauung in Hilbert ’ s Conception of Geometry : Between Arithmetic and General Relativity ’ , 2005 .
[41] Mark A. Wilson. Frege: The Royal Road from Geometry , 1992 .
[42] William W. Tait,et al. Against intuitionism: Constructive mathematics is part of classical mathematics , 1983, J. Philos. Log..
[43] G. Lakoff,et al. Where mathematics comes from : how the embodied mind brings mathematics into being , 2002 .
[44] S. Shapiro. Philosophy of mathematics : structure and ontology , 1997 .
[45] S. Shapiro. Why Anti-Realists and Classical Mathematicians Cannot Get Along , 2001 .
[46] Augustin-Louis Cauchy. Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .
[47] D. Laugwitz. Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .
[48] Solomon Gandz,et al. The Invention of the Decimal Fractions and the Application of the Exponential Calculus by Immanuel Bonfils of Tarascon (c. 1350) , 1936, Isis.
[49] Daesuk Han. Wittgenstein and the Real Numbers , 2010 .
[50] Roger North,et al. The Mathematical Career of Pierre de Fermat , 1974, The Mathematical Gazette.
[51] Ivor Grattan-Guinness,et al. The mathematics of the past: distinguishing its history from our heritage , 2004 .
[52] A. Cauchy. Cours d'analyse de l'École royale polytechnique , 1821 .
[53] E. Seneta. Cauchy, Augustin–Louis , 2006 .
[54] David Sherry,et al. The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .
[55] Douglas S. Bridges,et al. A Constructive Look at the Real Number Line , 1994 .
[56] M. White. From a philosophical point of view , 2004 .
[57] Exploration Mathematics: The Rhetoric of Discovery and the Rise of Infinitesimal Methods , 2001 .
[58] Hilary Putnam,et al. The Philosophy of Mathematics: , 2019, The Mathematical Imagination.
[59] Robert Goldblatt,et al. Lectures on the hyperreals , 1998 .
[60] Douglas S. Bridges,et al. Can Constructive Mathematics be Applied in Physics? , 1999, J. Philos. Log..
[61] J. Burgess. Mathematics and Bleak House , 2004 .
[62] A. Robinson. Numbers and Models , Standard and Nonstandard , 2010 .
[63] Yu. I. Manin,et al. Course in mathematical logic , 1977, Graduate texts in mathematics.
[64] Madeline Muntersbjorn,et al. Representational Innovation and Mathematical Ontology , 2004, Synthese.
[65] K. Sullivan. The Teaching of Elementary Calculus Using the Nonstandard Analysis Approach. , 1976 .
[66] Philip J. Davis,et al. The Mathematical Experience , 1982 .
[67] Ekkehard Kopp,et al. On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.
[68] P. Jourdain. The Origin of Cauchy's Conceptions of a Definite Integral and of the Continuity of a Function , 1913, Isis.
[69] John P. Burgess,et al. Why I am not a nominalist , 1983, Notre Dame J. Formal Log..
[70] Gottlob Frege,et al. Begriffsschrift und andere Aufsätze , 1964 .
[71] René Taton,et al. The Principal Works of Simon Stevin , 1959 .
[72] Mark Eli Kalderon,et al. Fictionalism in Metaphysics , 2005 .
[73] H. Keisler. Elementary Calculus: An Infinitesimal Approach , 1976 .
[74] Beyond the Axioms: The Question of Objectivity in Mathematics , 2001 .
[75] M. E. Moore. The completeness of the real line , 2007 .
[76] Implicit Differentiation with Microscopes , 2010 .
[77] K. D. Stroyan. Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .
[78] Detlef Laugwitz,et al. Comments on the paper “Two letters by N. N. Luzin to M. Ya. Vygodskiῐ” , 2000, Am. Math. Mon..
[79] Desmond Fearnley-Sander,et al. Hermann Grassmann and the Creation of Linear Algebra , 1979 .
[80] Helmut Hasse,et al. Number Theory , 2020, An Introduction to Probabilistic Number Theory.
[81] M. Beeson. Foundations of Constructive Mathematics: Metamathematical Studies , 1985 .
[82] M. Dummett. Elements of Intuitionism , 2000 .
[83] Joseph W. Dauben,et al. Abraham Robinson: The Creation of Nonstandard Analysis, A Personal and Mathematical Odyssey , 1995 .
[84] John P. Burgess,et al. A Subject with No Object: Strategies for Nominalistic Interpretation of Mathematics , 2001 .
[85] David Tall,et al. Dynamic mathematics and the blending of knowledge structures in the calculus , 2009 .
[86] T. Crilly. From Kant to Hilbert: a sourcebook in the foundations of mathematics , William Ewald (ed.). 2 vols. Pp. 1340. 1999. £50 (Paperback). ISBN 0 19 850537 X (Oxford University Press). , 2000, The Mathematical Gazette.
[87] P. Zsombor-Murray,et al. Elementary Mathematics from an Advanced Standpoint , 1940, Nature.
[88] Karen D. Rappaport. S. KOVALEVSKY: A MATHEMATICAL LESSON , 1981 .
[89] Mikhail G. Katz,et al. Cauchy's Continuum , 2011, Perspectives on Science.
[90] T. J. Demos. Response to Questionnaire on Art and Politics , 2008 .
[91] Lorenzo Magnani,et al. Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .
[92] Leif Arkeryd,et al. Intermolecular forces of infinite range and the Boltzmann equation , 1981 .
[93] D. J. Winter. A History of Algebra. , 1988 .
[94] Philip Ehrlich,et al. Real Numbers, Generalizations of the Reals and Theories of Continua (Synthese Library, Vol. 242) , 1994 .
[95] A. Prag,et al. The Mathematical Work of John Wallis , 1981 .
[96] Antoni Malet,et al. The Mathematical Career of Pierre de Fermat, 1601-1665 , 2001 .
[97] Alexandre V. Borovik,et al. An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals , 2012, Notre Dame J. Formal Log..
[98] Mikhail G. Katz,et al. Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.
[99] S. Yablo. The Myth of the Seven , 2010 .
[100] Lorenzo Magnani,et al. Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.
[101] Abraham Robinson. Selected papers of Abraham Robinson , 1978 .
[102] G. Lakoff,et al. Where Mathematics Comes From , 2000 .
[103] Lígia Arantes Sad,et al. Cauchy and the problem of point-wise convergence , 2001 .
[104] H. Billinge. Applied Constructive Mathematics: On Hellman's 'Mathematical Constructivism in Spacetime' , 2000, The British Journal for the Philosophy of Science.
[105] M. Beeson. Foundations of Constructive Mathematics , 1985 .
[106] Mikhail G. Katz,et al. Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.
[107] E. Perkins. NONSTANDARD METHODS IN STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS , 1988 .
[108] A. Weil. Review: M. S. Mahoney, The mathematical career of Pierre de Fermat , 1973 .
[109] T. Koetsier. Lakatos' Philosophy of Mathematics: A Historical Approach , 1991 .
[110] Fred Richman,et al. Interview with a constructive mathematician , 1996 .
[111] Judith V. Grabiner,et al. Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus , 1983 .
[112] D. Bloor,et al. Boundaries, Contingencies and Rigor , 2003 .
[113] S. S. Demidov,et al. Two Letters by N. N. Luzin to M. Ya. Vygodskiĭ , 2000, Am. Math. Mon..
[114] E. Bishop. Foundations of Constructive Analysis , 2012 .
[115] Philip Ehrlich,et al. The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .
[116] Gert Schubring,et al. Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .
[117] Carl B. Boyer,et al. The Concepts of the Calculus , 1940 .
[118] J. Burgess,et al. A Subject with no Object , 1999 .
[119] A. Cauchy. Résumé des leçons données à l'École royale polytechnique, sur le calcul infinitésimal , 2009 .
[120] E. Davies. A Defence of Mathematical Pluralism , 2005 .
[121] Kajsa Bråting,et al. A new look at E.G. Björling and the Cauchy sum theorem , 2007 .
[122] Jerzy Loś,et al. Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .
[123] R. Ely. Nonstandard Student Conceptions About Infinitesimals , 2010 .
[124] Herbert Meschkowski. Aus den Briefbüchern Georg Cantors , 1965 .
[125] Jeremy Gray,et al. Number theory: An approach through history; from Hammurapi to Legendre , 1986 .
[126] Edward Nelson. Internal set theory: A new approach to nonstandard analysis , 1977 .
[127] Errett Bishop. The crisis in contemporary mathematics , 1975 .
[128] Edwin Hewitt,et al. Rings of real-valued continuous functions. I , 1948 .
[129] A. Troelstra. Constructivism in mathematics , 1988 .
[130] M. Katz,et al. Two ways of obtaining infinitesimals by refining Cantor's completion of the reals , 2011, 1109.3553.
[131] G. Kreisel. WITTGENSTEIN'S REMARKS ON THE FOUNDATIONS OF MATHEMATICS , 1958 .
[132] H. Jerome Keisler,et al. The Hyperreal Line , 1994 .
[133] Geoffrey Hellman,et al. Constructive mathematics and quantum mechanics: Unbounded operators and the spectral theorem , 1993, J. Philos. Log..
[134] C. Hartshorne,et al. Collected Papers of Charles Sanders Peirce , 1935, Nature.
[135] C. Allen,et al. Stanford Encyclopedia of Philosophy , 2011 .
[136] G. Hardy,et al. An Introduction to the Theory of Numbers , 1938 .
[137] A. Sfard. Reification as the birth of metaphor , 1994 .
[138] William Ewald. From Kant to Hilbert , 1996 .
[139] Solomon Feferman,et al. Conceptions of the Continuum , 2009 .
[140] David Sepkoski. Nominalism and constructivism in seventeenth-century mathematical philosophy , 2007 .
[141] The Education of a Pure Mathematician , 1999 .
[142] D. Fowler. Dedekind's Theorem: , 1992 .
[143] Augusto Hasman,et al. Comments on the paper , 2012 .