A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography

We analyze the developments in mathematical rigor from the viewpoint of a Burgessian critique of nominalistic reconstructions. We apply such a critique to the reconstruction of infinitesimal analysis accomplished through the efforts of Cantor, Dedekind, and Weierstrass; to the reconstruction of Cauchy’s foundational work associated with the work of Boyer and Grabiner; and to Bishop’s constructivist reconstruction of classical analysis. We examine the effects of a nominalist disposition on historiography, teaching, and research.

[1]  David Eugene Smith,et al.  A source book in mathematics , 1930 .

[2]  Mikhail G. Katz,et al.  From discrete arithmetic to arithmetic of the continuum , 2013 .

[3]  Abraham Robinson,et al.  Nonstandard analysis and philosophy , 1979 .

[4]  Charles Coulston Gillispie,et al.  Dictionary of scientific biography , 1970 .

[5]  F. B.,et al.  The Concepts of the Calculus , 1939, Nature.

[6]  The Metaphysics of the Calculus , 1967 .

[7]  H. Billinge Did Bishop Have a Philosophy of Mathematics , 2003 .

[8]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[9]  Judith V. Grabiner,et al.  The origins of Cauchy's rigorous calculus , 1981 .

[10]  Herbert Breger The mysteries of adaequare: A vindication of fermat , 1994 .

[11]  Mikhail G. Katz,et al.  Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.

[12]  Philip Ehrlich,et al.  The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small , 2012, The Bulletin of Symbolic Logic.

[13]  D. Laugwitz Early delta functions and the use of infinitesimals in research , 1992 .

[14]  W. Whewell,et al.  The mathematical works , 1973 .

[15]  David Tall,et al.  The Psychology of Advanced Mathematical Thinking , 2002 .

[16]  Solomon Feferman,et al.  Relationships between Constructive, Predicative and Classical Systems of Analysis , 2000 .

[17]  A. Heyting,et al.  Intuitionism: An introduction , 1956 .

[18]  R. Goldblatt Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .

[19]  Errett Bishop,et al.  Mathematics as a Numerical Language , 1970 .

[20]  Paul Bernays,et al.  Natur und mathematisches Erkennen : Vorlesungen, gehalten 1919-1920 in Göttingen , 1992 .

[21]  A. Robinson Non-standard analysis , 1966 .

[22]  Karin U. Katz,et al.  When is .999... less than 1? , 2010, The Mathematics Enthusiast.

[23]  Cauchy's conception of rigour in analysis , 1986 .

[24]  Stewart Shapiro,et al.  Structure and Ontology , 1989 .

[25]  J. Stillwell Yearning for the Impossible: The Surprising Truths of Mathematics , 2018 .

[26]  Mikhail G. Katz,et al.  Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.

[27]  Geoffrey Hellman,et al.  Mathematical Constructivism in Spacetime , 1998, The British Journal for the Philosophy of Science.

[28]  Heinrich Rust Operational Semantics for Timed Systems: A Non-standard Approach to Uniform Modeling of Timed and Hybrid Systems , 2005, Lecture Notes in Computer Science.

[29]  Mitchell G. Reyes,et al.  The rhetoric in mathematics: Newton, Leibniz, the calculus, and the rhetorical force of the infinitesimal , 2004 .

[30]  D. Tall Looking at graphs through infinitesimal microscopes, windows and telescopes , 1980, The Mathematical Gazette.

[31]  The Role of Diagrams in Mathematical Arguments , 2008 .

[32]  B. L. Waerden,et al.  A history of algebra : from Al-Khwārizmī to Emmy Noether , 1985 .

[33]  P. Wallis,et al.  A Source Book in Mathematics, 1200-1800 , 1971, The Mathematical Gazette.

[34]  Martin Davis,et al.  Applied Nonstandard Analysis , 1977 .

[35]  Augustin-Louis Cauchy Oeuvres complètes: LEÇONS SUR LE CALCUL DIFFÉRENTIEL , 2009 .

[36]  R. Hepburn,et al.  BEING AND TIME , 2010 .

[37]  Enrico Giusti Les méthodes des maxima et minima de Fermat , 2009 .

[38]  J. Bell A primer of infinitesimal analysis , 1998 .

[39]  Christoph J. Scriba,et al.  B. L. van der Waerden: A History of Algebra. From al‐Khwarizmi to Emmy Noether. Berlin/Heidelberg/New York/Tokyo: Springer‐Verlag 1985. xi, 271 Seiten, 28 Figuren. Leinen, DM 98,‐. , 1987 .

[40]  Anschauung in Hilbert ’ s Conception of Geometry : Between Arithmetic and General Relativity ’ , 2005 .

[41]  Mark A. Wilson Frege: The Royal Road from Geometry , 1992 .

[42]  William W. Tait,et al.  Against intuitionism: Constructive mathematics is part of classical mathematics , 1983, J. Philos. Log..

[43]  G. Lakoff,et al.  Where mathematics comes from : how the embodied mind brings mathematics into being , 2002 .

[44]  S. Shapiro Philosophy of mathematics : structure and ontology , 1997 .

[45]  S. Shapiro Why Anti-Realists and Classical Mathematicians Cannot Get Along , 2001 .

[46]  Augustin-Louis Cauchy Oeuvres complètes: ANALYSE MATHÉMATIQUE. — Note sur les séries convergentes dont les divers termes sont des fonctions continues d'une variable réelle ou imaginaire, entre des limites données , 2009 .

[47]  D. Laugwitz Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820 , 1989 .

[48]  Solomon Gandz,et al.  The Invention of the Decimal Fractions and the Application of the Exponential Calculus by Immanuel Bonfils of Tarascon (c. 1350) , 1936, Isis.

[49]  Daesuk Han Wittgenstein and the Real Numbers , 2010 .

[50]  Roger North,et al.  The Mathematical Career of Pierre de Fermat , 1974, The Mathematical Gazette.

[51]  Ivor Grattan-Guinness,et al.  The mathematics of the past: distinguishing its history from our heritage , 2004 .

[52]  A. Cauchy Cours d'analyse de l'École royale polytechnique , 1821 .

[53]  E. Seneta Cauchy, Augustin–Louis , 2006 .

[54]  David Sherry,et al.  The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .

[55]  Douglas S. Bridges,et al.  A Constructive Look at the Real Number Line , 1994 .

[56]  M. White From a philosophical point of view , 2004 .

[57]  Exploration Mathematics: The Rhetoric of Discovery and the Rise of Infinitesimal Methods , 2001 .

[58]  Hilary Putnam,et al.  The Philosophy of Mathematics: , 2019, The Mathematical Imagination.

[59]  Robert Goldblatt,et al.  Lectures on the hyperreals , 1998 .

[60]  Douglas S. Bridges,et al.  Can Constructive Mathematics be Applied in Physics? , 1999, J. Philos. Log..

[61]  J. Burgess Mathematics and Bleak House , 2004 .

[62]  A. Robinson Numbers and Models , Standard and Nonstandard , 2010 .

[63]  Yu. I. Manin,et al.  Course in mathematical logic , 1977, Graduate texts in mathematics.

[64]  Madeline Muntersbjorn,et al.  Representational Innovation and Mathematical Ontology , 2004, Synthese.

[65]  K. Sullivan The Teaching of Elementary Calculus Using the Nonstandard Analysis Approach. , 1976 .

[66]  Philip J. Davis,et al.  The Mathematical Experience , 1982 .

[67]  Ekkehard Kopp,et al.  On Cauchy's Notion of Infinitesimal , 1988, The British Journal for the Philosophy of Science.

[68]  P. Jourdain The Origin of Cauchy's Conceptions of a Definite Integral and of the Continuity of a Function , 1913, Isis.

[69]  John P. Burgess,et al.  Why I am not a nominalist , 1983, Notre Dame J. Formal Log..

[70]  Gottlob Frege,et al.  Begriffsschrift und andere Aufsätze , 1964 .

[71]  René Taton,et al.  The Principal Works of Simon Stevin , 1959 .

[72]  Mark Eli Kalderon,et al.  Fictionalism in Metaphysics , 2005 .

[73]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[74]  Beyond the Axioms: The Question of Objectivity in Mathematics , 2001 .

[75]  M. E. Moore The completeness of the real line , 2007 .

[76]  Implicit Differentiation with Microscopes , 2010 .

[77]  K. D. Stroyan Uniform Continuity and Rates of Growth of Meromorphic Functions1) , 1972 .

[78]  Detlef Laugwitz,et al.  Comments on the paper “Two letters by N. N. Luzin to M. Ya. Vygodskiῐ” , 2000, Am. Math. Mon..

[79]  Desmond Fearnley-Sander,et al.  Hermann Grassmann and the Creation of Linear Algebra , 1979 .

[80]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[81]  M. Beeson Foundations of Constructive Mathematics: Metamathematical Studies , 1985 .

[82]  M. Dummett Elements of Intuitionism , 2000 .

[83]  Joseph W. Dauben,et al.  Abraham Robinson: The Creation of Nonstandard Analysis, A Personal and Mathematical Odyssey , 1995 .

[84]  John P. Burgess,et al.  A Subject with No Object: Strategies for Nominalistic Interpretation of Mathematics , 2001 .

[85]  David Tall,et al.  Dynamic mathematics and the blending of knowledge structures in the calculus , 2009 .

[86]  T. Crilly From Kant to Hilbert: a sourcebook in the foundations of mathematics , William Ewald (ed.). 2 vols. Pp. 1340. 1999. £50 (Paperback). ISBN 0 19 850537 X (Oxford University Press). , 2000, The Mathematical Gazette.

[87]  P. Zsombor-Murray,et al.  Elementary Mathematics from an Advanced Standpoint , 1940, Nature.

[88]  Karen D. Rappaport S. KOVALEVSKY: A MATHEMATICAL LESSON , 1981 .

[89]  Mikhail G. Katz,et al.  Cauchy's Continuum , 2011, Perspectives on Science.

[90]  T. J. Demos Response to Questionnaire on Art and Politics , 2008 .

[91]  Lorenzo Magnani,et al.  Perceiving the Infinite and the Infinitesimal World: Unveiling and Optical Diagrams in Mathematics , 2005 .

[92]  Leif Arkeryd,et al.  Intermolecular forces of infinite range and the Boltzmann equation , 1981 .

[93]  D. J. Winter A History of Algebra. , 1988 .

[94]  Philip Ehrlich,et al.  Real Numbers, Generalizations of the Reals and Theories of Continua (Synthese Library, Vol. 242) , 1994 .

[95]  A. Prag,et al.  The Mathematical Work of John Wallis , 1981 .

[96]  Antoni Malet,et al.  The Mathematical Career of Pierre de Fermat, 1601-1665 , 2001 .

[97]  Alexandre V. Borovik,et al.  An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals , 2012, Notre Dame J. Formal Log..

[98]  Mikhail G. Katz,et al.  Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.

[99]  S. Yablo The Myth of the Seven , 2010 .

[100]  Lorenzo Magnani,et al.  Mathematics through Diagrams: Microscopes in Non-Standard and Smooth Analysis , 2007, Model-Based Reasoning in Science, Technology, and Medicine.

[101]  Abraham Robinson Selected papers of Abraham Robinson , 1978 .

[102]  G. Lakoff,et al.  Where Mathematics Comes From , 2000 .

[103]  Lígia Arantes Sad,et al.  Cauchy and the problem of point-wise convergence , 2001 .

[104]  H. Billinge Applied Constructive Mathematics: On Hellman's 'Mathematical Constructivism in Spacetime' , 2000, The British Journal for the Philosophy of Science.

[105]  M. Beeson Foundations of Constructive Mathematics , 1985 .

[106]  Mikhail G. Katz,et al.  Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.

[107]  E. Perkins NONSTANDARD METHODS IN STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS , 1988 .

[108]  A. Weil Review: M. S. Mahoney, The mathematical career of Pierre de Fermat , 1973 .

[109]  T. Koetsier Lakatos' Philosophy of Mathematics: A Historical Approach , 1991 .

[110]  Fred Richman,et al.  Interview with a constructive mathematician , 1996 .

[111]  Judith V. Grabiner,et al.  Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus , 1983 .

[112]  D. Bloor,et al.  Boundaries, Contingencies and Rigor , 2003 .

[113]  S. S. Demidov,et al.  Two Letters by N. N. Luzin to M. Ya. Vygodskiĭ , 2000, Am. Math. Mon..

[114]  E. Bishop Foundations of Constructive Analysis , 2012 .

[115]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[116]  Gert Schubring,et al.  Conflicts between Generalization, Rigor and Intuition. Number Concepts Underlying the Development of Analysis in 17th-19th Century France and Germany , 2005 .

[117]  Carl B. Boyer,et al.  The Concepts of the Calculus , 1940 .

[118]  J. Burgess,et al.  A Subject with no Object , 1999 .

[119]  A. Cauchy Résumé des leçons données à l'École royale polytechnique, sur le calcul infinitésimal , 2009 .

[120]  E. Davies A Defence of Mathematical Pluralism , 2005 .

[121]  Kajsa Bråting,et al.  A new look at E.G. Björling and the Cauchy sum theorem , 2007 .

[122]  Jerzy Loś,et al.  Quelques Remarques, Théorèmes Et Problèmes Sur Les Classes Définissables D'algèbres , 1955 .

[123]  R. Ely Nonstandard Student Conceptions About Infinitesimals , 2010 .

[124]  Herbert Meschkowski Aus den Briefbüchern Georg Cantors , 1965 .

[125]  Jeremy Gray,et al.  Number theory: An approach through history; from Hammurapi to Legendre , 1986 .

[126]  Edward Nelson Internal set theory: A new approach to nonstandard analysis , 1977 .

[127]  Errett Bishop The crisis in contemporary mathematics , 1975 .

[128]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[129]  A. Troelstra Constructivism in mathematics , 1988 .

[130]  M. Katz,et al.  Two ways of obtaining infinitesimals by refining Cantor's completion of the reals , 2011, 1109.3553.

[131]  G. Kreisel WITTGENSTEIN'S REMARKS ON THE FOUNDATIONS OF MATHEMATICS , 1958 .

[132]  H. Jerome Keisler,et al.  The Hyperreal Line , 1994 .

[133]  Geoffrey Hellman,et al.  Constructive mathematics and quantum mechanics: Unbounded operators and the spectral theorem , 1993, J. Philos. Log..

[134]  C. Hartshorne,et al.  Collected Papers of Charles Sanders Peirce , 1935, Nature.

[135]  C. Allen,et al.  Stanford Encyclopedia of Philosophy , 2011 .

[136]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[137]  A. Sfard Reification as the birth of metaphor , 1994 .

[138]  William Ewald From Kant to Hilbert , 1996 .

[139]  Solomon Feferman,et al.  Conceptions of the Continuum , 2009 .

[140]  David Sepkoski Nominalism and constructivism in seventeenth-century mathematical philosophy , 2007 .

[141]  The Education of a Pure Mathematician , 1999 .

[142]  D. Fowler Dedekind's Theorem: , 1992 .

[143]  Augusto Hasman,et al.  Comments on the paper , 2012 .