New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions

[1]  A. Wazwaz,et al.  Einstein's vacuum field equation: Painlevé analysis and Lie symmetries , 2019, Waves in Random and Complex Media.

[2]  A. Wazwaz Multiple complex and multiple real soliton solutions for the integrable sine-Gordon equation , 2018, Optik.

[3]  Jian-Guo Liu,et al.  Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction , 2018, Comput. Math. Appl..

[4]  A. Wazwaz,et al.  Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation , 2018, Nonlinear Dynamics.

[5]  A. Wazwaz Two wave mode higher-order modified KdV equations: Essential conditions for multiple soliton solutions to exist , 2017 .

[6]  A. Wazwaz Abundant Solutions of Distinct Physical Structures for Three Shallow Water Waves Models , 2017 .

[7]  Ting Su,et al.  Explicit solutions for a modified 2+1-dimensional coupled Burgers equation by using Darboux transformation , 2017, Appl. Math. Lett..

[8]  Xing Lü,et al.  Bäcklund transformation, multiple wave solutions and lump solutions to a (3 + 1)-dimensional nonlinear evolution equation , 2017 .

[9]  Jingsong He,et al.  Smooth positon solutions of the focusing modified Korteweg–de Vries equation , 2017, 1705.06836.

[10]  Junyi Zhu,et al.  Line-soliton and rational solutions to (2+1)-dimensional Boussinesq equation by Dbar-problem , 2017, 1704.02779.

[11]  M. Darvishi,et al.  Soliton solutions for Boussinesq-like equations with spatio-temporal dispersion , 2017 .

[12]  P. Clarkson,et al.  Rational solutions of the Boussinesq equation and applications to rogue waves , 2016, 1609.00503.

[13]  Wen-Xiu Ma,et al.  Constructing lump solutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation , 2016 .

[14]  Wen-Xiu Ma,et al.  Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation , 2016 .

[15]  Chaudry Masood Khalique,et al.  Solitary waves with the Madelung fluid description: A generalized derivative nonlinear Schrödinger equation , 2016, Commun. Nonlinear Sci. Numer. Simul..

[16]  Chaudry Masood Khalique,et al.  A direct bilinear Bäcklund transformation of a (2+1)-dimensional Korteweg-de Vries-like model , 2015, Appl. Math. Lett..

[17]  Chaudry Masood Khalique,et al.  New exact solutions and conservation laws of a coupled Kadomtsev–Petviashvili system , 2013 .

[18]  A. Wazwaz Multiple Kink Solutions for the (2+1)-dimensional Sharma--Tasso--Olver and the Sharma--Tasso--Olver--Burgers Equations , 2013 .

[19]  Dumitru Mihalache,et al.  Models of few optical cycle solitons beyond the slowly varying envelope approximation , 2013 .

[20]  A. Wazwaz A variety of distinct kinds of multiple soliton solutions for a ( 3 + 1)‐dimensional nonlinear evolution equation , 2013 .

[21]  A. Wazwaz One Kink Solution for a Variety of Nonlinear Fifth-order Equations , 2012 .

[22]  A. Wazwaz Two Kinds of Multiple Wave Solutions for the Potential YTSF Equation and a Potential YTSF-Type Equation , 2012 .

[23]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[24]  Willy Hereman,et al.  Symbolic methods to construct exact solutions of nonlinear partial differential equations , 1997 .

[25]  M. Kruskal,et al.  New similarity reductions of the Boussinesq equation , 1989 .

[26]  Ryogo Hirota,et al.  Resonance of Solitons in One Dimension , 1983 .

[27]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[28]  H. P. McKean,et al.  Boussinesq's equation on the circle , 1981 .

[29]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[30]  M. Boussinesq Essai sur la théorie des eaux courantes , 1873 .