A Rotating Satellite Plane around Milky Way–like Galaxy from the TNG50 Simulation

We study the satellite plane problem of the Milky Way (MW) by using the recently published simulation data of TNG50-1. Here, we only consider the satellite plane consisting of the brightest 14 MW satellites (11 classical satellites plus Canes Venatici I, Crater II, and Antlia II). One halo (haloID = 395, at z = 0, hereafter halo395) of 231 MW-like candidates possesses a satellite plane as spatially thin and kinematically coherent as the observed one has been found. Halo395 resembles the MW in a number of intriguing ways: it hosts a spiral central galaxy, and its satellite plane is almost (∼87°) perpendicular to the central stellar disk. In addition, halo395 is embedded in a sheet plane, with a void on the top and bottom, similar to the local environment of MW. More interestingly, we found that 11 of the 14 of the satellites on the plane of halo395 arise precisely from the peculiar geometry of its large-scale environment (e.g., sheet and voids). The remaining three members appeared at the right place with the right velocity by chance at z = 0. Our results support previous studies wherein the satellite plane problem is not seen as a serious challenge to the ΛCDM model and its formation is ascribed to the peculiarities of our environment.

[1]  M. Pawlowski,et al.  Classifying the satellite plane membership of Centaurus A’s dwarf galaxies using orbital alignment constraints , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  A. Jenkins,et al.  The Milky Way’s plane of satellites is consistent with ΛCDM , 2022, Nature Astronomy.

[3]  P. Tissera,et al.  Planes of Satellites around Simulated Disk Galaxies. II. Time-persistent Planes of Kinematically Coherent Satellites in ΛCDM , 2022, The Astrophysical Journal.

[4]  Chao Liu,et al.  Milky Way mass with K giants and BHB stars using LAMOST, SDSS/SEGUE, and Gaia: 3D spherical Jeans equation and Tracer Mass Estimator , 2022, Monthly Notices of the Royal Astronomical Society.

[5]  A. Wetzel,et al.  Baryonic solutions and challenges for cosmological models of dwarf galaxies , 2022, Nature Astronomy.

[6]  M. Boylan-Kolchin Planes of satellites are not a problem for (just) ΛCDM , 2021, Nature Astronomy.

[7]  M. Pawlowski It’s time for some plane speaking , 2021, Nature Astronomy.

[8]  M. Hilker,et al.  The Cen A galaxy group: Dynamical mass and missing baryons , 2021, Astronomy & Astrophysics.

[9]  M. Pawlowski,et al.  On the Co-orbitation of Satellite Galaxies along the Great Plane of Andromeda: NGC 147, NGC 185, and Expectations from Cosmological Simulations , 2021, The Astrophysical Journal.

[10]  F. Hammer,et al.  Gaia EDR3 Proper Motions of Milky Way Dwarfs. I. 3D Motions and Orbits , 2021, The Astrophysical Journal.

[11]  M. Hilker,et al.  The coherent motion of Cen A dwarf satellite galaxies remains a challenge for ΛCDM cosmology , 2020, Astronomy & Astrophysics.

[12]  A. McConnachie,et al.  Updated Proper Motions for Local Group Dwarf Galaxies Using Gaia Early Data Release 3 , 2020, Research Notes of the AAS.

[13]  J. Bailin,et al.  Planes of satellites around Milky Way/M31-mass galaxies in the FIRE simulations and comparisons with the Local Group , 2020, Monthly Notices of the Royal Astronomical Society.

[14]  B. Weiner,et al.  The SAGA Survey. II. Building a Statistical Sample of Satellite Systems around Milky Way–like Galaxies , 2020, 2008.12783.

[15]  B. Altieri,et al.  The Uchuu simulations: Data Release 1 and dark matter halo concentrations , 2020, 2007.14720.

[16]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[17]  R. Beaton,et al.  Luminosity Functions and Host-to-host Scatter of Dwarf Satellite Systems in the Local Volume , 2020, The Astrophysical Journal.

[18]  R. Beaton,et al.  Radial Distributions of Dwarf Satellite Systems in the Local Volume , 2020, The Astrophysical Journal.

[19]  P. Tissera,et al.  Planes of Satellites around Simulated Disk Galaxies. I. Finding High-quality Planar Configurations from Positional Information and Their Comparison to MW/M31 Data , 2020, The Astrophysical Journal.

[20]  M. Ishigaki,et al.  The mass of our Milky Way , 2019, Science China Physics, Mechanics & Astronomy.

[21]  P. Kroupa,et al.  The Milky Way’s disc of classical satellite galaxies in light of Gaia DR2 , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[23]  Y. Hoffman,et al.  Cosmicflows-3: Cosmography of the Local Void , 2019, The Astrophysical Journal.

[24]  J. Bailin,et al.  A profile in FIRE: resolving the radial distributions of satellite galaxies in the Local Group with simulations , 2019, Monthly Notices of the Royal Astronomical Society.

[25]  C. Frenk,et al.  Evolution of galactic planes of satellites in the eagle simulation , 2019, Monthly Notices of the Royal Astronomical Society.

[26]  J. Bullock,et al.  Do Halos that Form Early, Have High Concentration, Are Part of a Pair, or Contain a Central Galaxy Potential Host More Pronounced Planes of Satellite Galaxies? , 2019, The Astrophysical Journal.

[27]  V. Springel,et al.  First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time , 2019, Monthly Notices of the Royal Astronomical Society.

[28]  V. Springel,et al.  First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[29]  Annalisa Pillepich,et al.  The IllustrisTNG simulations: public data release , 2018, Computational Astrophysics and Cosmology.

[30]  Sergey E. Koposov,et al.  The hidden giant: discovery of an enormous Galactic dwarf satellite in Gaia DR2 , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  P. Hopkins,et al.  The Local Group on FIRE: dwarf galaxy populations across a suite of hydrodynamic simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  J. Forero-Romero,et al.  We are not the 99 percent: quantifying asphericity in the distribution of Local Group satellites , 2018, 1805.03188.

[33]  C. Brook,et al.  Gaia DR2 proper motions of dwarf galaxies within 420 kpc , 2018, Astronomy & Astrophysics.

[34]  A. Dutton,et al.  NIHAO XV: the environmental impact of the host galaxy on galactic satellite and field dwarf galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[35]  M. Rejkuba,et al.  Distances from the tip of the red giant branch to the dwarf galaxies dw1335-29 and dw1340-30 in the Centaurus group , 2018, Astronomy & Astrophysics.

[36]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[37]  C. Frenk,et al.  The multiplicity and anisotropy of galactic satellite accretion , 2017, 1712.05409.

[38]  P. Kroupa,et al.  MOND simulation suggests an origin for some peculiarities in the Local Group , 2017, Astronomy & Astrophysics.

[39]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[40]  Cca,et al.  First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.

[41]  H. Jerjen,et al.  The M 101 group complex: new dwarf galaxy candidates and spatial structure , 2017, 1701.03681.

[42]  A. Brooks,et al.  The Role of Baryons in Creating Statistically Significant Planes of Satellites around Milky Way-Mass Galaxies , 2016, 1610.03077.

[43]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[44]  Sergey E. Koposov,et al.  The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater , 2016, 1601.07178.

[45]  G. Stinson,et al.  NIHAO V: too big does not fail – reconciling the conflict between ΛCDM predictions and the circular velocities of nearby field galaxies , 2015, 1512.00453.

[46]  A. Dutton,et al.  Simulated ΛCDM analogues of the thin plane of satellites around the Andromeda galaxy are not kinematically coherent structures , 2015, 1510.06028.

[47]  S. McGaugh,et al.  The new Milky Way satellites: alignment with the VPOS and predictions for proper motions and velocity dispersions , 2015, 1505.07465.

[48]  M. Steinmetz,et al.  Planes of satellite galaxies and the cosmic web , 2015, 1503.05915.

[49]  R. Ibata,et al.  Velocity anti-correlation of diametrically opposed galaxy satellites in the low-redshift Universe , 2014, Nature.

[50]  I. Karachentsev,et al.  CONFIRMATION OF FAINT DWARF GALAXIES IN THE M81 GROUP , 2013, 1309.4130.

[51]  P. Kroupa,et al.  The rotationally stabilized VPOS and predicted proper motions of the Milky Way satellite galaxies , 2013, 1309.1159.

[52]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[53]  M. Boylan-Kolchin,et al.  On the stark difference in satellite distributions around the Milky Way and Andromeda , 2013, 1305.0560.

[54]  R. Ibata,et al.  A vast, thin plane of corotating dwarf galaxies orbiting the Andromeda galaxy , 2013, Nature.

[55]  P. Kroupa,et al.  Can filamentary accretion explain the orbital poles of the Milky Way satellites , 2012, 1204.6039.

[56]  Alan W. McConnachie,et al.  THE OBSERVED PROPERTIES OF DWARF GALAXIES IN AND AROUND THE LOCAL GROUP , 2012, 1204.1562.

[57]  Helmut Jerjen,et al.  THE INVISIBLES: A DETECTION ALGORITHM TO TRACE THE FAINTEST MILKY WAY SATELLITES , 2008, 0807.3345.

[58]  B. Willman,et al.  Hundreds of Milky Way Satellites? Luminosity Bias in the Satellite Luminosity Function , 2008, 0806.4381.

[59]  P. Kroupa,et al.  The Orbital Poles of Milky Way Satellite Galaxies: A Rotationally Supported Disk of Satellites , 2008, 0802.3899.

[60]  A. Helmi,et al.  Infall of substructures on to a Milky Way-like dark halo , 2007, 0711.2429.

[61]  E. Guinan,et al.  First Determination of the Distance and Fundamental Properties of an Eclipsing Binary in the Andromeda Galaxy , 2005, astro-ph/0511045.

[62]  M. Irwin,et al.  Structural parameters for the M31 dwarf spheroidals , 2005, astro-ph/0511004.

[63]  S. Cole,et al.  The distribution of satellite galaxies: the great pancake , 2005, astro-ph/0503400.

[64]  A. Klypin,et al.  The Anisotropic Distribution of Galactic Satellites , 2005, astro-ph/0502496.

[65]  Pavel Kroupa,et al.  The Great disk of Milky Way satellites and cosmological sub-structures , 2004, astro-ph/0410421.

[66]  J. Bailin,et al.  Internal and External Alignment of the Shapes and Angular Momenta of ΛCDM Halos , 2004, astro-ph/0408163.

[67]  R. Sagar,et al.  Identification of 13 Cepheids and 333 other variables in M 31 , 2002, astro-ph/0210373.

[68]  S. Holland,et al.  The Distance to the M31 Globular Cluster System , 1998, astro-ph/9802088.

[69]  D. Lynden-Bell,et al.  Dwarf Galaxies and Globular Clusters in High Velocity Hydrogen Streams , 1976 .

[70]  OUP accepted manuscript , 2022, Monthly Notices of the Royal Astronomical Society.

[71]  Accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 02/07/07 THE DISCOVERY OF TWO EXTREMELY LOW LUMINOSITY MILKY WAY GLOBULAR CLUSTERS , 2022 .