Gammadelta T cell development--having the strength to get there.

[1]  A. Hayday,et al.  Lymphotoxin-Mediated Regulation of γδ Cell Differentiation by αß T Cell Progenitors , 2005, Science.

[2]  P. Pereira,et al.  Early Expression of a Functional TCRβ Chain Inhibits TCRγ Gene Rearrangements without Altering the Frequency of TCRγδ Lineage Cells1 , 2004, The Journal of Immunology.

[3]  D. Littman,et al.  Thymic Origin of Intestinal αß T Cells Revealed by Fate Mapping of RORγt+ Cells , 2004, Science.

[4]  K. Eichmann,et al.  Delayed and Restricted Expression Limits Putative Instructional Opportunities of Vγ1.1/Vγ2 γδ TCR in αβ/γδ Lineage Choice in the Thymus , 2004, The Journal of Immunology.

[5]  D. Raulet,et al.  Positive Selection of Dendritic Epidermal γδ T Cell Precursors in the Fetal Thymus Determines Expression of Skin-Homing Receptors , 2004 .

[6]  Thomas M. Schmitt,et al.  Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. , 2004, Immunity.

[7]  C. Benoist,et al.  Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells , 2004, Nature Immunology.

[8]  M. Kubo,et al.  Regulation of αβ/γδ T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling , 2004 .

[9]  Thomas M. Schmitt,et al.  Obligatory Role for Cooperative Signaling by Pre-TCR and Notch during Thymocyte Differentiation1 , 2004, The Journal of Immunology.

[10]  H. Macdonald,et al.  Notch signaling in T- and B-cell development. , 2004, Current opinion in immunology.

[11]  Yongwon Choi,et al.  An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells , 2004, Nature Immunology.

[12]  A. Hayday,et al.  Age-dependent Requirement for γδ T Cells in the Primary but Not Secondary Protective Immune Response against an Intestinal Parasite , 2003, The Journal of experimental medicine.

[13]  M. Toribio,et al.  Sustained Notch1 signaling instructs the earliest human intrathymic precursors to adopt a gammadelta T-cell fate in fetal thymus organ culture. , 2003, Blood.

[14]  A. Bas,et al.  Extrathymic TCR Gene Rearrangement in Human Small Intestine: Identification of New Splice Forms of Recombination Activating Gene-1 mRNA with Selective Tissue Expression 1 , 2003, The Journal of Immunology.

[15]  A. Hayday,et al.  The inter-relatedness and interdependence of mouse T cell receptor γδ+ and αβ+ cells , 2003, Nature Immunology.

[16]  L. Xerri,et al.  LAT regulates γδ T cell homeostasis and differentiation , 2003, Nature Immunology.

[17]  J. Wiesner,et al.  Microbial isoprenoid biosynthesis and human γδ T cell activation , 2003, FEBS letters.

[18]  S. Aizawa,et al.  Bcl11b is required for differentiation and survival of αβ T lymphocytes , 2003, Nature Immunology.

[19]  A. Hayday,et al.  Immunoregulation in the tissues by |[gamma]||[delta]| T cells , 2003 .

[20]  Michel C. Nussenzweig,et al.  Extrathymic T Cell Lymphopoiesis , 2003, The Journal of experimental medicine.

[21]  R. Xavier,et al.  Essential role for Vav1 in activation, but not development, of γδ T cells , 2003 .

[22]  P. Love,et al.  An architectural perspective on signaling by the pre‐, αβ and γδ T cell receptors , 2003, Immunological reviews.

[23]  A. Bhandoola,et al.  Thymopoiesis independent of common lymphoid progenitors , 2003, Nature Immunology.

[24]  P. Pereira,et al.  T Cell Receptor-γ Allele-Specific Selection of Vγ1/Vδ4 Cells in the Intestinal Epithelium1 , 2002, The Journal of Immunology.

[25]  B. Verhasselt,et al.  Active Form of Notch Imposes T Cell Fate in Human Progenitor Cells1 , 2002, The Journal of Immunology.

[26]  P. Love,et al.  Distinct Structure and Signaling Potential of the γδTCR Complex , 2002 .

[27]  H. Macdonald,et al.  Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta Lineage Thymocytes. , 2002, Immunity.

[28]  P. Vassalli,et al.  Gut intraepithelial lymphocyte development. , 2002, Current opinion in immunology.

[29]  S. Ramanathan,et al.  Evidence for the Extrathymic Origin of Intestinal TCRγδ+ T Cells in Normal Rats and for an Impairment of This Differentiation Pathway in BB Rats1 , 2002, The Journal of Immunology.

[30]  J. D. Di Santo,et al.  Characterization of T Cell Differentiation in the Murine Gut , 2002, The Journal of experimental medicine.

[31]  H. Macdonald,et al.  T Cell Receptor Specificity Is Critical for the Development of Epidermal γδ T Cells , 2001, The Journal of experimental medicine.

[32]  T. Honjo,et al.  The IL-7 receptor controls the accessibility of the TCRgamma locus by Stat5 and histone acetylation. , 2001, Immunity.

[33]  A. Hayday,et al.  Intraepithelial lymphocytes: exploring the Third Way in immunology , 2001, Nature Immunology.

[34]  J. Sen,et al.  p38 MAP kinase activity modulates α β T cell development , 2001 .

[35]  R. Perlmutter,et al.  Presenilin-dependent γ-secretase activity modulates thymocyte development , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  F. Ivars,et al.  Early TCR αβ Expression Promotes Maturation of T Cells Expressing FcεRIγ Containing TCR/CD3 Complexes1 , 2001, The Journal of Immunology.

[37]  T. Honjo,et al.  Histone Acetylation Determines the Developmentally Regulated Accessibility for T Cell Receptor γ Gene Recombination , 2001, The Journal of experimental medicine.

[38]  Joonsoo Kang,et al.  Evidence That γδ versus αβ T Cell Fate Determination Is Initiated Independently of T Cell Receptor Signaling , 2001, The Journal of experimental medicine.

[39]  E. Robey,et al.  MHC Recognition in Thymic Development: Distinct, Parallel Pathways for Survival and Lineage Commitment1 , 2000, The Journal of Immunology.

[40]  G. Matsuzaki,et al.  Development of Dendritic Epidermal T Cells with a Skewed Diversity of γδTCRs in Vδ1-Deficient Mice1 , 2000, The Journal of Immunology.

[41]  C. Pavlovich,et al.  Premature Expression of T Cell Receptor (Tcr)αβ Suppresses Tcrγδ Gene Rearrangement but Permits Development of γδ Lineage T Cells , 2000, The Journal of experimental medicine.

[42]  Fabio Grassi,et al.  Different initiation of pre-TCR and γδTCR signalling , 2000, Nature.

[43]  Julia M. Lewis,et al.  Enterocyte Expression of Interleukin 7 Induces Development of γδ T Cells and Peyer's Patches , 2000, The Journal of experimental medicine.

[44]  Y. Chien,et al.  A population of murine γδ T cells that recognize an inducible MHC class Ib molecule , 2000 .

[45]  A. Hayday [gamma][delta] cells: a right time and a right place for a conserved third way of protection. , 2000, Annual review of immunology.

[46]  D. Green,et al.  Autospecific γδ thymocytes that escape negative selection find sanctuary in the intestine , 1999 .

[47]  D. Novosad,et al.  Cutting Edge: Protective Response to Pulmonary Injury Requires γδ T Lymphocytes , 1999, The Journal of Immunology.

[48]  H. Fehling,et al.  Alpha beta/gamma delta lineage commitment in the thymus of normal and genetically manipulated mice. , 1999, Advances in immunology.

[49]  S. Carding,et al.  Generation of human gammadelta T-cell repertoires. , 1999, Critical reviews in immunology.

[50]  W. Leonard,et al.  Interleukin 7 Receptor Control of  T Cell Receptor γ Gene Rearrangement: Role of Receptor-associated Chains and Locus Accessibility , 1998, The Journal of experimental medicine.

[51]  G. Weinmaster,et al.  Defects in limb, craniofacial, and thymic development in Jagged2 mutant mice. , 1998, Genes & development.

[52]  A. Hayday,et al.  Conservation of T cell receptor conformation in epidermal gammadelta cells with disrupted primary Vgamma gene usage. , 1998, Science.

[53]  W. Pao,et al.  Intrathymic δ Selection Events in γδ Cell Development , 1997 .

[54]  B. Fowlkes,et al.  Notch Activity Influences the αβ versus γδ T Cell Lineage Decision , 1997, Cell.

[55]  H. Fehling,et al.  The αβ T Cell Receptor Can Replace the γδ Receptor in the Development of γδ Lineage Cells , 1996 .

[56]  J. Miyazaki,et al.  Interleukin 7 receptor-deficient mice lack gammadelta T cells. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[57]  W. Waters,et al.  Cryptosporidium parvum infection in T-cell receptor (TCR)-alpha- and TCR-delta-deficient mice , 1996, Infection and immunity.

[58]  S. Kaufmann,et al.  gamma/delta and other unconventional T lymphocytes: what do they see and what do they do? , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Y. Chien,et al.  Recognition by gamma/delta T cells. , 1996, Annual review of immunology.

[60]  A. Hayday,et al.  α β and γ δ T cells can share a late common precursor , 1995, Current Biology.

[61]  S. Burdach,et al.  Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine , 1995, The Journal of experimental medicine.

[62]  C. Ware,et al.  Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice , 1994, The Journal of experimental medicine.

[63]  J. Allison,et al.  Gamma delta T cells in murine epithelia: origin, repertoire, and function. , 1991, Advances in experimental medicine and biology.

[64]  Mark M. Davis,et al.  Expression of a fetal γδ T-cell receptor in adult mice triggers a non-MHC-linked form of selective depletion , 1991 .

[65]  I. Weissman,et al.  A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells , 1990, Cell.

[66]  M. Krangel,et al.  A distinct wave of human T cell receptor gamma/delta lymphocytes in the early fetal thymus: evidence for controlled gene rearrangement and cytokine production , 1990, The Journal of experimental medicine.

[67]  C. Janeway,et al.  Specificity and function of T cells bearing γδ receptors , 1988 .

[68]  P. Doherty,et al.  Diversity, rearrangement, and expression of murine T cell gamma genes , 1986, Cell.

[69]  S. Tonegawa,et al.  Diversity of murine gamma genes and expression in fetal and adult T lymphocytes , 1986, Nature.

[70]  S. Artavanis-Tsakonas,et al.  Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats , 1985, Cell.