Evolutionary Visual Exploration: Evaluation of an IEC Framework for Guided Visual Search

We evaluate and analyse a framework for evolutionary visual exploration (EVE) that guides users in exploring large search spaces. EVE uses an interactive evolutionary algorithm to steer the exploration of multidimensional data sets toward two-dimensional projections that are interesting to the analyst. Our method smoothly combines automatically calculated metrics and user input in order to propose pertinent views to the user. In this article, we revisit this framework and a prototype application that was developed as a demonstrator, and summarise our previous study with domain experts and its main findings. We then report on results from a new user study with a clearly predefined task, which examines how users leverage the system and how the system evolves to match their needs. While we previously showed that using EVE, domain experts were able to formulate interesting hypotheses and reach new insights when exploring freely, our new findings indicate that users, guided by the interactive evolutionary algorithm, are able to converge quickly to an interesting view of their data when a clear task is specified. We provide a detailed analysis of how users interact with an evolutionary algorithm and how the system responds to their exploration strategies and evaluation patterns. Our work aims at building a bridge between the domains of visual analytics and interactive evolution. The benefits are numerous, in particular for evaluating interactive evolutionary computation (IEC) techniques based on user study methodologies.

[1]  Anastasia Bezerianos,et al.  Evolutionary visual exploration: experimental analysis of algorithm behaviour , 2013, GECCO.

[2]  John R. Koza,et al.  Genetic programming (videotape): the movie , 1992 .

[3]  Leland Wilkinson,et al.  Scagnostics Distributions , 2008 .

[4]  Enrico Bertini,et al.  Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[5]  C. North,et al.  Visual to Parametric Interaction (V2PI) , 2013, PloS one.

[6]  W. Banzhaf C2.10 Interactive Evolution , 1997 .

[7]  W. Mackay Responding to cognitive overload : Co-adaptation between users and technology , 2000 .

[8]  M. Sheelagh T. Carpendale,et al.  Evaluating Information Visualizations , 2008, Information Visualization.

[9]  Ben Shneiderman,et al.  Integrating Statistics and Visualization for Exploratory Power: From Long-Term Case Studies to Design Guidelines , 2009, IEEE Computer Graphics and Applications.

[10]  Chris North,et al.  An insight-based methodology for evaluating bioinformatics visualizations , 2005, IEEE Transactions on Visualization and Computer Graphics.

[11]  Gerhard Fischer,et al.  User Modeling in Human–Computer Interaction , 2001, User Modeling and User-Adapted Interaction.

[12]  Ole J Mengshoel,et al.  The Crowding Approach to Niching in Genetic Algorithms , 2008, Evolutionary Computation.

[13]  Riccardo Poli,et al.  Genetic Programming with User-Driven Selection : Experiments on the Evolution of Algorithms for Image Enhancement , 1997 .

[14]  Sergey Malinchik,et al.  Exploratory Data Analysis with Interactive Evolution , 2004, GECCO.

[15]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[16]  Georges G. Grinstein Harnessing the Human in Knowledge Discovery , 1996, KDD.

[17]  Xavier Llorà,et al.  Analyzing active interactive genetic algorithms using visual analytics , 2006, GECCO '06.

[18]  Chaomei Chen,et al.  Top 10 Unsolved Information Visualization Problems , 2005, IEEE Computer Graphics and Applications.

[19]  Evelyne Lutton,et al.  Evolution of Fractal Shapes for Artists and Designers , 2006, Int. J. Artif. Intell. Tools.

[20]  Jimmy Johansson,et al.  Quality-based guidance for exploratory dimensionality reduction , 2013, Inf. Vis..

[21]  Chris North,et al.  Information Visualization , 2008, Lecture Notes in Computer Science.

[22]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[23]  Daniel A. Keim,et al.  Guided Sketching for Visual Search and Exploration in Large Scatter Plot Spaces , 2014, EuroVA@EuroVis.

[24]  Fatih Korkmaz,et al.  Feedback-driven interactive exploration of large multidimensional data supported by visual classifier , 2014, 2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

[25]  Chris North,et al.  Semantic interaction for visual text analytics , 2012, CHI.

[26]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[27]  Kristin A. Cook,et al.  Illuminating the Path: The Research and Development Agenda for Visual Analytics , 2005 .

[28]  Stefan Bruckner,et al.  Visual Parameter Space Analysis: A Conceptual Framework , 2014, IEEE Transactions on Visualization and Computer Graphics.

[29]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[30]  Tamara Munzner,et al.  DimStiller: Workflows for dimensional analysis and reduction , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[31]  Ronald A. Rensink,et al.  The Perception of Correlation in Scatterplots , 2010, Comput. Graph. Forum.

[32]  PererAdam,et al.  Integrating statistics and visualization for exploratory power , 2009 .

[33]  Alex Endert,et al.  Finding Waldo: Learning about Users from their Interactions , 2014, IEEE Transactions on Visualization and Computer Graphics.

[34]  Marcus A. Magnor,et al.  Perception-based visual quality measures , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[35]  Tamara Munzner,et al.  Design Study Methodology: Reflections from the Trenches and the Stacks , 2012, IEEE Transactions on Visualization and Computer Graphics.

[36]  Hitoshi Iba,et al.  Interactive evolutionary computation , 2009, New Generation Computing.

[37]  Makoto Fukumoto,et al.  Extended Interactive Evolutionary Computation using heart rate variability as fitness value for composing music chord progression , 2010, 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC).

[38]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[39]  Jacques Lévy Véhel,et al.  The fitness map scheme: application to interactive multifractal image denoising , 2005, 2005 IEEE Congress on Evolutionary Computation.

[40]  Eugene Zhang,et al.  Visualization of Diversity in Large Multivariate Data Sets , 2010, IEEE Transactions on Visualization and Computer Graphics.

[41]  Denis Gracanin,et al.  Interactive Visual Steering - Rapid Visual Prototyping of a Common Rail Injection System , 2008, IEEE Transactions on Visualization and Computer Graphics.

[42]  Carla E. Brodley,et al.  Dis-function: Learning distance functions interactively , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).

[43]  Ben Shneiderman,et al.  A Rank-by-Feature Framework for Interactive Exploration of Multidimensional Data , 2005, Inf. Vis..

[44]  Andreas Holzinger,et al.  On Computationally-Enhanced Visual Analysis of Heterogeneous Data and Its Application in Biomedical Informatics , 2014, Interactive Knowledge Discovery and Data Mining in Biomedical Informatics.

[45]  Klaus Mueller,et al.  TripAdvisor^{N-D}: A Tourism-Inspired High-Dimensional Space Exploration Framework with Overview and Detail , 2013, IEEE Transactions on Visualization and Computer Graphics.

[46]  Anastasia Bezerianos,et al.  Evolutionary Visual Exploration: Evaluation With Expert Users , 2013, Comput. Graph. Forum.

[47]  Tamara Munzner,et al.  The four-level nested model revisited: blocks and guidelines , 2012, BELIV '12.

[48]  Bernd Hamann,et al.  A general approach for similarity-based linear projections using a genetic algorithm , 2012, Visualization and Data Analysis.

[49]  David Gotz,et al.  Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics , 2014, IEEE Transactions on Visualization and Computer Graphics.

[50]  Pierre Dragicevic,et al.  GraphDice: A System for Exploring Multivariate Social Networks , 2010, Comput. Graph. Forum.

[51]  Hideyuki Takagi,et al.  Visualized IEC: interactive evolutionary computation with multidimensional data visualization , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[52]  Lindsay I. Smith,et al.  A tutorial on Principal Components Analysis , 2002 .

[53]  S. Johansson,et al.  Interactive Dimensionality Reduction Through User-defined Combinations of Quality Metrics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[54]  Gilles Venturini,et al.  A User Assistant for the Selection and Parameterization of the Visualizations in Visual Data Mining , 2012, 2012 16th International Conference on Information Visualisation.

[55]  Chris North,et al.  Unifying the Sensemaking Loop with Semantic Interaction , 2011 .

[56]  Helwig Hauser,et al.  Interactive Visual Analysis Supporting Design, Tuning, and Optimization of Diesel Engine Injection , 2011 .

[57]  Leland Wilkinson,et al.  ScagExplorer: Exploring Scatterplots by Their Scagnostics , 2014, 2014 IEEE Pacific Visualization Symposium.

[58]  Jonathon Shlens,et al.  A Tutorial on Principal Component Analysis , 2014, ArXiv.

[59]  Min Chen,et al.  Knowledge-Assisted Visualization , 2010 .