Modified Hermitian and skew‐Hermitian splitting methods for non‐Hermitian positive‐definite linear systems

To further study the Hermitian and non-Hermitian splitting methods for a non-Hermitian and positive-definite matrix, we introduce a so-called lopsided Hermitian and skew-Hermitian splitting and then establish a class of lopsided Hermitian/skew-Hermitian (LHSS) methods to solve the non-Hermitian and positive-definite systems of linear equations. These methods include a two-step LHSS iteration and its inexact version, the inexact Hermitian/skew-Hermitian (ILHSS) iteration, which employs some Krylov subspace methods as its inner process. We theoretically prove that the LHSS method converges to the unique solution of the linear system for a loose restriction on the parameter α. Moreover, the contraction factor of the LHSS iteration is derived. The presented numerical examples illustrate the effectiveness of both LHSS and ILHSS iterations. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[2]  Chen Greif,et al.  Block Stationary Methods for Nonsymmetric Cyclically Reduced Systems Arising from Three-Dimensional Elliptic Equations , 1999, SIAM J. Matrix Anal. Appl..

[3]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[4]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..

[5]  Gene H. Golub,et al.  Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.

[6]  Gene H. Golub,et al.  Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation , 2005, Numerische Mathematik.

[7]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[8]  Chen Greif,et al.  Iterative Solution of Cyclically Reduced Systems Arising from Discretization of the Three-Dimensional Convection-Diffusion Equation , 1998, SIAM J. Sci. Comput..

[9]  Gene H. Golub,et al.  On the preconditioning of matrices with skew-symmetric splittings , 2004, Numerical Algorithms.

[10]  M. Ng,et al.  Block-circulant preconditioners for systems arising from discretization of the three-dimensional convection-diffusion equation , 2002 .

[11]  Y. Saad,et al.  Iterative solution of linear systems in the 20th century , 2000 .

[12]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[13]  Gene H. Golub,et al.  Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices , 2006, SIAM J. Sci. Comput..

[14]  MOHAMMAD TAGHI DARVISHI The Best Values of Parameters in Accelerated Successive Overrelaxation Methods , 2004 .

[15]  Michele Benzi,et al.  Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..