Invisible cloaking of material bodies using the wave flow method

The current knowledge of the physics of electromagnetic cloaking of material objects by the wave flow method is reviewed. Experiments demonstrating the feasibility of this cloaking method are described. Some aspects of calculating cloak profiles are examined, and achievements and unsolved problems in the theory of the interaction of electromagnetic waves with shells are considered. Prospects for developing the cloaking method for waves of other physical nature (acoustic and probability density waves) are discussed.

[1]  Qu Shao-bo,et al.  The design of metamaterial cloaks embedded in anisotropic medium , 2009 .

[2]  V. Veselago,et al.  CONFERENCES AND SYMPOSIA: Electrodynamics of materials with negative index of refraction , 2003 .

[3]  Lewei Li,et al.  Investigation of the far/near-field properties of the inhomogeneous and anisotropic invisible cloak covered PEC cylinder illuminated by the parallel electric-line-source , 2009 .

[4]  U. Leonhardt,et al.  General relativity in electrical engineering , 2006, SPIE Optics + Optoelectronics.

[5]  N. N. Voitovich,et al.  Reducing the Backscattering via Complex Impedance Coating , 2009, IEEE Transactions on Antennas and Propagation.

[6]  D. Werner,et al.  Two-dimensional electromagnetic cloak having a uniform thickness for elliptic cylindrical regions , 2008 .

[7]  David R. Smith,et al.  Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations , 2007, 0706.2452.

[8]  Yu Luo,et al.  High-directivity antenna with small antenna aperture , 2009 .

[9]  J. Weiner,et al.  Fundamentals and applications , 2003 .

[10]  Huanyang Chen,et al.  Acoustic cloaking in three dimensions using acoustic metamaterials , 2007 .

[11]  S. Tretyakov,et al.  Broadband electromagnetic cloaking of long cylindrical objects. , 2009, Physical review letters.

[12]  Two-dimensional dissimilar electromagnetic cloak for irregular regions , 2009 .

[13]  N. Engheta,et al.  Cloaking a sensor. , 2009, Physical review letters.

[14]  J. Pendry,et al.  Hiding under the carpet: a new strategy for cloaking. , 2008, Physical review letters.

[15]  C. Krowne,et al.  Physics of negative refraction and negative index materials : optical and electronic aspects and deversified approaches , 2007 .

[16]  U. Chettiar,et al.  Nonmagnetic cloak with minimized scattering , 2007 .

[17]  David R. Smith,et al.  Full-wave simulations of electromagnetic cloaking structures. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  B. Katsenelenbaum Excitation of surface waves during diffraction by a circular impedance cylinder , 2009 .

[19]  Hongsheng Chen,et al.  Electromagnetic wave interactions with a metamaterial cloak. , 2007, Physical review letters.

[20]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[21]  Y. Gulyaev,et al.  Metamaterials: Basic research and potential applications , 2008 .

[22]  Yu Luo,et al.  Cloak for multilayered and gradually changing media , 2008 .

[23]  Lewei Li,et al.  Invisibility of a metamaterial cloak illuminated by spherical electromagnetic wave , 2009 .

[24]  T. Cui,et al.  Arbitrarily elliptical–cylindrical invisible cloaking , 2008 .

[25]  Matti Lassas,et al.  Approximate quantum cloaking and almost-trapped states. , 2008, Physical review letters.

[26]  J. Willis,et al.  On cloaking for elasticity and physical equations with a transformation invariant form , 2006 .

[27]  Frolov,et al.  Physical effects in wormholes and time machines. , 1990, Physical review. D, Particles and fields.

[28]  J. Pendry,et al.  Calculation of material properties and ray tracing in transformation media. , 2006, Optics express.

[29]  U. Leonhardt,et al.  Notes on conformal invisibility devices , 2006, physics/0605227.

[30]  Che Ting Chan,et al.  Transformation media based super focusing antenna , 2009 .

[31]  S. Cornbleet Microwave Optics: The Optics of Microwave Antenna Design , 1977 .

[32]  P. Sheng,et al.  Membrane-type acoustic metamaterial with negative dynamic mass. , 2008, Physical review letters.

[33]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[34]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[35]  V. Shalaev,et al.  Chapter 1 Negative refractive index metamaterials in optics , 2008 .

[36]  A. Kildishev,et al.  Optical black hole: Broadband omnidirectional light absorber , 2009 .

[37]  METHODOLOGICAL NOTES: What are the left-handed media and what is interesting about them? , 2004, physics/0408135.

[38]  Matt Visser,et al.  Lorentzian Wormholes: From Einstein to Hawking , 1995 .

[39]  Shuang Zhang,et al.  Cloaking of matter waves. , 2008, Physical review letters.

[40]  S. Anantha Ramakrishna,et al.  Near-field lenses in two dimensions , 2002 .

[41]  S. Morgan,et al.  General Solution of the Luneberg Lens Problem , 1958 .

[42]  I. Smolyaninov,et al.  Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm. , 2008, Optics letters.

[43]  Yu Luo,et al.  Full-wave analysis of prolate spheroidal and hyperboloidal cloaks , 2008 .

[44]  D. Werner,et al.  Two-dimensional eccentric elliptic electromagnetic cloaks , 2008 .

[45]  J. Pendry,et al.  Spherical perfect lens: Solutions of Maxwell's equations for spherical geometry , 2004 .

[46]  N. Engheta,et al.  Effects of size and frequency dispersion in plasmonic cloaking. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Zhuo Xu,et al.  Numerical method for designing approximate cloaks with arbitrary shapes. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Chao Li,et al.  Experimental verification of broadband invisibility using a cloak based on inductor-capacitor networks , 2009 .

[49]  Eleftherios N. Economou,et al.  The science of negative index materials , 2008 .

[50]  G. Uhlmann,et al.  Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. , 2007, Physical review letters.

[51]  David R. Smith,et al.  Invisibility cloak without singularity , 2008, 0809.2317.

[52]  Xiaojun Liu,et al.  Three dimensional multilayered acoustic cloak with homogeneous isotropic materials , 2009 .

[53]  Jiafu Wang,et al.  Material parameter equation for elliptical cylindrical cloaks , 2008 .

[54]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[55]  Said Zouhdi,et al.  Metamaterials and Plasmonics: Fundamentals, Modelling, Applications , 2009 .

[56]  Bae-Ian Wu,et al.  Interaction of an electromagnetic wave with a cone-shaped invisibility cloak and polarization rotator , 2008 .

[57]  F. Zolla,et al.  Cloaking with Curved Spaces , 2009, Science.

[58]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[59]  M. Qiu,et al.  Non-magnetic simplified cylindrical cloak with suppressed zero-th order scattering , 2008, 0806.3226.

[60]  T. Cui,et al.  Analytical design of conformally invisible cloaks for arbitrarily shaped objects. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  M. Qiu,et al.  Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. , 2007, Physical review letters.

[62]  Andrea Alù,et al.  Cloaking mechanism with antiphase plasmonic satellites , 2008 .

[63]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[64]  Yu Luo,et al.  Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations , 2007, 0712.2027.

[65]  Hua Ma,et al.  The open cloak , 2009 .

[66]  V. Veselago,et al.  Электродинамика веществ с одновременно отрицательными значениями ε и μ , 1967 .