The Eleventh Power Residue Symbol

Abstract This paper presents an efficient algorithm for computing 11th-power residue symbols in the cyclo-tomic field ℚ(ζ11), $ \mathbb{Q}\left( {{\zeta }_{11}} \right), $where 11 is a primitive 11th root of unity. It extends an earlier algorithm due to Caranay and Scheidler (Int. J. Number Theory, 2010) for the 7th-power residue symbol. The new algorithm finds applications in the implementation of certain cryptographic schemes.

[1]  Renate Scheidler,et al.  A Public-Key Cryptosystem Using Purely Cubic Fields , 1998, Journal of Cryptology.

[2]  H. Lenstra Euclid's Algorithm in Cyclotomic Fields , 1975 .

[3]  Renate Scheidler,et al.  AN EFFICIENT SEVENTH POWER RESIDUE SYMBOL ALGORITHM , 2010 .

[4]  Renate Scheidler,et al.  A public-key cryptosystem utilizing cyclotomic fields , 1995, Des. Codes Cryptogr..

[5]  E. Kummer Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. , 1852 .

[6]  A. Weilert Fast Computation of the Biquadratic Residue Symbol , 2002 .

[7]  H. J. S. Smith,et al.  Report on the Theory of Numbers , 1965 .

[8]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[9]  Serge Vaudenay,et al.  Short Undeniable Signatures Based on Group Homomorphisms , 2011, Journal of Cryptology.

[10]  David Naccache,et al.  New number-theoretic cryptographic primitives , 2020, IACR Cryptol. ePrint Arch..

[11]  Hugh C. Williams,et al.  An M³ Public-Key Encryption Scheme , 1985, CRYPTO.

[12]  Franz Lemmermeyer,et al.  THE EUCLIDEAN ALGORITHM IN ALGEBRAIC NUMBER FIELDS , 2004 .

[13]  Franz Lemmermeyer,et al.  Reciprocity Laws: From Euler to Eisenstein , 2000 .

[14]  Koen de Boer,et al.  Calculating the Power Residue Symbol and Ibeta: Applications of Computing the Group Structure of the Principal Units of a p-adic Number Field Completion , 2017, International Symposium on Symbolic and Algebraic Computation.

[15]  Ivan Damgård,et al.  Efficient algorithms for the gcd and cubic residuosity in the ring of Eisenstein integers , 2005, J. Symb. Comput..

[16]  Igor E. Shparlinski,et al.  An Extremely Small and Efficient Identification Scheme , 2000, ACISP.