The Eleventh Power Residue Symbol
暂无分享,去创建一个
David Naccache | Marc Joye | Oleksandra Lapiha | Ky Nguyen | D. Naccache | M. Joye | Oleksandra Lapiha | Ky Nguyen
[1] Renate Scheidler,et al. A Public-Key Cryptosystem Using Purely Cubic Fields , 1998, Journal of Cryptology.
[2] H. Lenstra. Euclid's Algorithm in Cyclotomic Fields , 1975 .
[3] Renate Scheidler,et al. AN EFFICIENT SEVENTH POWER RESIDUE SYMBOL ALGORITHM , 2010 .
[4] Renate Scheidler,et al. A public-key cryptosystem utilizing cyclotomic fields , 1995, Des. Codes Cryptogr..
[5] E. Kummer. Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. , 1852 .
[6] A. Weilert. Fast Computation of the Biquadratic Residue Symbol , 2002 .
[7] H. J. S. Smith,et al. Report on the Theory of Numbers , 1965 .
[8] Silvio Micali,et al. Probabilistic Encryption , 1984, J. Comput. Syst. Sci..
[9] Serge Vaudenay,et al. Short Undeniable Signatures Based on Group Homomorphisms , 2011, Journal of Cryptology.
[10] David Naccache,et al. New number-theoretic cryptographic primitives , 2020, IACR Cryptol. ePrint Arch..
[11] Hugh C. Williams,et al. An M³ Public-Key Encryption Scheme , 1985, CRYPTO.
[12] Franz Lemmermeyer,et al. THE EUCLIDEAN ALGORITHM IN ALGEBRAIC NUMBER FIELDS , 2004 .
[13] Franz Lemmermeyer,et al. Reciprocity Laws: From Euler to Eisenstein , 2000 .
[14] Koen de Boer,et al. Calculating the Power Residue Symbol and Ibeta: Applications of Computing the Group Structure of the Principal Units of a p-adic Number Field Completion , 2017, International Symposium on Symbolic and Algebraic Computation.
[15] Ivan Damgård,et al. Efficient algorithms for the gcd and cubic residuosity in the ring of Eisenstein integers , 2005, J. Symb. Comput..
[16] Igor E. Shparlinski,et al. An Extremely Small and Efficient Identification Scheme , 2000, ACISP.