The geometry of sets of parameters of wave packet frames
暂无分享,去创建一个
[1] G. Kutyniok,et al. Density of weighted wavelet frames , 2003 .
[2] Lp bounds for a maximal dyadic sum operator , 2002, math/0212164.
[3] Hans G. Feichtinger,et al. Flexible Gabor-wavelet atomic decompositions for L2-Sobolev spaces , 2006 .
[4] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[5] M. Lacey,et al. A proof of boundedness of the Carleson operator , 2000 .
[6] O. Christensen,et al. Density of Gabor Frames , 1999 .
[7] Christoph Thiele,et al. On Calderon s conjecture , 1999 .
[8] Michael Lacey,et al. L P Estimates on the Bilinear Hilbert Transform for 2 < P < 1 , 1997 .
[9] Stephen Taylor,et al. Fractional dimension of sets in discrete spaces , 1989 .
[10] A. Olevskiǐ,et al. Almost Integer Translates. Do Nice Generators Exist? , 2004 .
[11] On Calder\'on's conjecture , 1999, math/9903203.
[12] Demetrio Labate,et al. A unified characterization of reproducing systems generated by a finite family, II , 2002 .
[13] A. Atzmon,et al. Completeness of Integer Translates in Function Spaces on R , 1996 .
[14] Demetrio Labate,et al. A unified characterization of reproducing systems generated by a finite family , 2002 .
[15] Demetrio Labate,et al. An Approach to the Study of Wave Packet Systems , 2003 .
[16] O. Christensen,et al. Irregular Wavelet Frames and Gabor Frames , 2001 .
[17] Demetrio Labate,et al. Oversampling, quasi-affine frames, and wave packets , 2004 .
[18] Christoph Thiele,et al. $L^p$ estimates on the bilinear Hilbert transform for $2 < p < \infty$ , 1997 .