Neutron bombardment of single wall carbon nanohorn (SWCNH): DSC determination of the stored Wigner-Szilard energy

[1]  F. Cataldo,et al.  Single-walled Carbon Nanohorn: Electronic Absorption Spectra in Neutral and Oxodized State , 2014 .

[2]  T. Braun,et al.  Wigner Energy of Nanodiamond Bombarded with Neutrons or Irradiated with γ Radiation , 2014 .

[3]  F. Cataldo,et al.  Synthesis and thermal stability of mercury diacetylide Hg(CCH)2 , 2013 .

[4]  Xingtai Zhou,et al.  Sealing nuclear graphite with pyrolytic carbon , 2013 .

[5]  T. Braun,et al.  Thermal Properties, Raman Spectroscopy and Tem Images of Neutron-Bombarded Graphite , 2013 .

[6]  J. Charpentier,et al.  Thermal hazard analysis of triacetone triperoxide (TATP) by DSC and GC/MS , 2012 .

[7]  Ottorino Ori,et al.  Topological lattice descriptors of graphene sheets with fullerene-like nanostructures , 2010 .

[8]  F. Cataldo,et al.  Stability of C 60 and C 70 fullerenes toward corpuscular and ? radiation , 2009 .

[9]  L. Duclaux,et al.  Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit , 2009 .

[10]  D. Lexa,et al.  Thermal and structural properties of low-fluence irradiated graphite , 2009 .

[11]  Timothy Abram,et al.  Generation-IV nuclear power: A review of the state of the science , 2008 .

[12]  R. Telling,et al.  Radiation defects in graphite , 2007 .

[13]  B. Marsden,et al.  Application of an independent parallel reactions model on the annealing kinetics to irradiated graphite waste , 2007 .

[14]  Peter J. F. Harris,et al.  Fullerene-related structure of commercial glassy carbons , 2004 .

[15]  T. Braun,et al.  Determination of traces of elemental impurities in single walled (SWNT) and multi walled (MWNT) pristine and purified carbon nanotubes by instrumental neutron activation analysis , 2004 .

[16]  S. Iijima,et al.  Direct evidence for atomic defects in graphene layers , 2004, Nature.

[17]  Steven J. Zinkle,et al.  Materials needs for fusion, Generation IV fission reactors and spallation neutron sources – similarities and differences , 2004 .

[18]  W Benoit,et al.  Reinforcement of single-walled carbon nanotube bundles by intertube bridging , 2004, Nature materials.

[19]  Kai Nordlund,et al.  Irradiation effects in carbon nanotubes , 2004 .

[20]  R. Telling,et al.  Wigner defects bridge the graphite gap , 2003, Nature materials.

[21]  F. Cataldo The impact of a fullerene-like concept in carbon black science , 2002 .

[22]  M. Yudasaka,et al.  Interlayer spacing anomaly of single-wall carbon nanohorn aggregate , 2000 .

[23]  K. Furukawa,et al.  Thorium Molten-Salt Nuclear Energy Synergetics , 1990 .

[24]  T. Iwata Fine structure of Wigner energy release spectrum in neutron irradiated graphite , 1985 .

[25]  W. Primak,et al.  Radiation Damage in Diamond and Silicon Carbide , 1956 .

[26]  A. J. Kropf,et al.  Thermal, structural, and radiological properties of irradiated graphite from the ASTRA research reactor - : Implications for disposal , 2006 .

[27]  Timothy D. Burchell,et al.  Carbon materials for advanced technologies , 1999 .

[28]  Timothy D. Burchell,et al.  CHAPTER 13 – Fission Reactor Applications of Carbon , 1999 .

[29]  T. Ebbesen,et al.  Graphitic cones and the nucleation of curved carbon surfaces , 1997, Nature.

[30]  V. I. Karpukhin,et al.  Annealing of radiation damage in graphite , 1975 .

[31]  Rm Wie Spectrometric Identification of Organic Compounds , 1974 .

[32]  S. Glasstone Sourcebook on Atomic Energy , 1950 .