A hybrid method for parameter estimation and its application to biomedical systems

A general version of a hybrid method for parameter estimation is presented with a theoretical support and an illustrative example of application. This method consists of a curve fitting algorithm that takes the initial estimate of the parameterization from an artificial neural network. The idea is to improve the convergence of the algorithm to the sought parameterization using a close initial estimate. The motivation arises from biomedical problems where one is interested in obtaining a meaningful estimate so that it can be used for both description and prediction purposes. Two strategies are proposed for the application of the hybrid method: one is of general applicability, the other is intended for systems defined by the series connection of various blocks. The feasibility of the method is illustrated with a case study related to the neuromuscular blockade of patients undergoing general anaesthesia.

[1]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[2]  Weatherley Bc,et al.  Pharmacokinetics, pharmacodynamics and dose-response relationships of atracurium administered i.v. , 1983 .

[3]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[4]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[5]  Pedro Lago,et al.  Comparison of On-line Autocalibration Techniques of a Controller of Neuromuscular Blockade , 2000 .

[6]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[7]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[8]  H. Magalhaes,et al.  A hybrid method for parameter estimation , 2005, IEEE International Workshop on Intelligent Signal Processing, 2005..

[9]  Hartmut Derendorf,et al.  Modeling of Pharmacokinetic/Pharmacodynamic (PK/PD) Relationships: Concepts and Perspectives , 1999, Pharmaceutical Research.

[10]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[11]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[12]  David G. Luenberger,et al.  Linear and Nonlinear Programming: Second Edition , 2003 .

[13]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[14]  I. Jolliffe Principal Component Analysis , 2002 .

[15]  Teresa Mendonça,et al.  PID control strategies for the automatic control of neuromuscular blockade , 1998 .

[16]  Nikolaus Gravenstein,et al.  Clinical Anesthesia Practice , 1994 .

[17]  Hugo Alonso,et al.  MULTIPLE STRATEGIES FOR PARAMETER ESTIMATION VIA A HYBRID METHOD: A COMPARATIVE STUDY , 2006 .

[18]  Patrick Siarry,et al.  A hybrid method combining continuous tabu search and Nelder-Mead simplex algorithms for the global optimization of multiminima functions , 2005, Eur. J. Oper. Res..

[19]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .