The GRAPE project

The goal of the Gravity Pipe (GRAPE) project is to accelerate astrophysical N-body simulations. Because almost all computing time is spent evaluating the gravitational force between particles, we can greatly accelerate many N-body simulations by developing a specialized hardware system for the force calculation.

[1]  T. Narumi,et al.  Protein Explorer: A Petaflops Special-Purpose Computer System for Molecular Dynamics Simulations , 2003, ACM/IEEE SC 2003 Conference (SC'03).

[2]  Toshiyuki Fukushige,et al.  GRAPE-6: Massively-Parallel Special-Purpose Computer for Astrophysical Particle Simulations , 2003, astro-ph/0310702.

[3]  E. Athanassoula Bar-Halo Interaction and Bar Growth , 2002, astro-ph/0203368.

[4]  Atsushi Kawai,et al.  Pseudoparticle Multipole Method: A Simple Method to Implement a High-Accuracy Tree Code , 2000, astro-ph/0012041.

[5]  Atsushi Kawai,et al.  GRAPE-5: A Special-Purpose Computer for N-Body Simulations , 1999, astro-ph/9909116.

[6]  Hut,et al.  Astrophysics on the GRAPE family of special-purpose computers , 1998, Science.

[7]  J. Makino Yet Another Fast Multipole Method without Multipoles-Pseudoparticle Multipole Method , 1998, astro-ph/9806213.

[8]  Toshikazu Ebisuzaki,et al.  GRAPE-4: A Massively Parallel Special-Purpose Computer for Collisional N-Body Simulations , 1997 .

[9]  Toshikazu Ebisuzaki,et al.  A Highly Parallelized Special-Purpose Computer for Many-Body Simulations with an Arbitrary Central Force: MD-GRAPE , 1996 .

[10]  J. Makino Postcollapse Evolution of Globular Clusters , 1996, astro-ph/9608160.

[11]  T Ito,et al.  A special‐purpose computer for molecular dynamics: GRAPE‐2A , 1994, Proteins.

[12]  Toshikazu Ebisuzaki,et al.  Highly parallelized special-purpose computer, GRAPE-3 , 1993 .

[13]  T. Ebisuzaki,et al.  The evolution of massive black-hole binaries in merging galaxies. I: Evolution of a binary in a spherical galaxy , 1993 .

[14]  T. Ebisuzaki,et al.  Violent Relaxation Is Not a Relaxation Process , 1992 .

[15]  Junichiro Makino,et al.  On a Hermite Integrator with Ahmad-Cohen Scheme for Gravitational Many-Body Problems , 1992 .

[16]  R Fine,et al.  FASTRUN: A special purpose, hardwired computer for molecular simulation , 1991, Proteins.

[17]  Toshikazu Ebisuzaki,et al.  Kinematic Structures of Merger Remnants , 1991 .

[18]  Toshikazu Ebisuzaki,et al.  GRAPE-1A--Special-Purpose Computer for N-body Simulation with a Tree Code , 1991 .

[19]  Junichiro Makino,et al.  Treecode with a Special-Purpose Processor , 1991 .

[20]  T. Ebisuzaki,et al.  A Special-Purpose Computer for Gravitational Many-Body Systems--GRAPE-2 , 1991 .

[21]  Joshua E. Barnes,et al.  A modified tree code: don't laugh; it runs , 1990 .

[22]  A. F. Bakker,et al.  Design and implementation of the Delft molecular dynamics processor , 1988 .

[23]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[24]  Piet Hut,et al.  Use of Supercomputers in Stellar Dynamics , 1986 .

[25]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[26]  D. Sugimoto,et al.  Post-collapse evolution and gravothermal oscillation of globular clusters , 1984 .

[27]  S. J. Aarseth,et al.  Dynamical Evolution of Clusters Of Galaxies, II , 1963 .

[28]  J. Makino,et al.  Structure of Dark Matter Halos from Hierarchical Clustering. III. Shallowing of the Inner Cusp , 2004 .

[29]  P. Hut,et al.  Astrophysical Supercomputing using Particle Simulations , 2003 .

[30]  T. Ebisuzaki,et al.  Molecular Dynamics Machine: Special-Purpose Computer for Molecular Dynamics Simulations , 1999 .

[31]  S. McMillan The vectorization of small-n integrators , 1986 .

[32]  Jeremiah P. Ostriker,et al.  ON THE DYNAMICAL EVOLUTION OF CLUSTERS OF GALAXIES , 1978 .