Crack parameter estimation in structures using finite element modeling

This paper addresses the problem of linear crack quantification, crack depth estimation and localization, in structures. An optimization technique based on a finite element model for cracked structural elements is employed in the estimation of crack parameters for beam, truss and two-dimensional frame structures. The modal data for the cracked structures are obtained by solving the corresponding eigenvalue problem. The error in the modal data is simulated by an additive noise that follows the normal distribution. The simulated reduced modal data is expanded using the eigenvector projection method. Numerical examples showed that this technique gives good results for cracks with high depth ratio. The accuracy of the estimated crack parameters depends on (1) the number of modes used, (2) the error level in the cracked structure modal data and (3) the number of measured degrees of freedom in the case of reduced modal data.

[1]  Mohammad H. Dado,et al.  Coupled transverse and axial vibratory behaviour of cracked beam with end mass and rotary inertia , 2003 .

[2]  Seamus D. Garvey,et al.  A COMBINED GENETIC AND EIGENSENSITIVITY ALGORITHM FOR THE LOCATION OF DAMAGE IN STRUCTURES , 1998 .

[3]  Douglas K. Lindner,et al.  Damage detection, location, and estimation for space trusses , 1993, Smart Structures.

[4]  Walter M. West,et al.  Illustration of the use of modal assurance criterion to detect structural changes in an Orbiter test specimen , 1986 .

[5]  M. Friswell,et al.  THE CONVERGENCE OF THE ITERATED IRS METHOD , 1998 .

[6]  Seamus D. Garvey,et al.  Parameter subset selection in damage location , 1997 .

[7]  S. Smith,et al.  Iterative use of direct matrix updates - Connectivity and convergence , 1992 .

[8]  Cecilia Surace,et al.  DAMAGE ASSESSMENT OF MULTIPLE CRACKED BEAMS: NUMERICAL RESULTS AND EXPERIMENTAL VALIDATION , 1997 .

[9]  Colin H. J. Fox,et al.  The location of defects in structures - A comparison of the use of natural frequency and mode shape data , 1992 .

[10]  John E. Mottershead,et al.  Model Updating In Structural Dynamics: A Survey , 1993 .

[11]  Mohammad H. Dado,et al.  A comprehensive crack identification algorithm for beams under different end conditions , 1997 .

[12]  T. Chondros,et al.  Analytical Methods in Rotor Dynamics , 1983 .

[13]  Karolos M. Grigoriadis,et al.  Structural Damage Detection Using Linear Matrix Inequality Methods , 2000 .

[14]  Mohamed Kaouk,et al.  Structural damage assessment using a generalized minimum rank perturbation theory , 1993 .

[15]  Theodore Bartkowicz,et al.  DAMAGE DETECTION AND HEALTH MONITORING OF LARGE SPACE STRUCTURES , 1993 .

[16]  Cheng-shung Lin,et al.  Location of modeling errors using modal test data , 1990 .

[17]  R. Mayes,et al.  Error localization using mode shapes: An application to a two link robot arm , 1991 .

[18]  Per G. Reinhall,et al.  An Analytical and Experimental Analysis for a One-Dimensional Passive Stand-Off Layer Damping Treatment , 2000 .

[19]  Arun Kumar Pandey,et al.  Damage detection from changes in curvature mode shapes , 1991 .