Tomographic reconstruction of vector fields in variable background media
暂无分享,去创建一个
[1] V. Sharafutdinov. Integral Geometry of Tensor Fields , 1994 .
[2] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[3] Hans Braun,et al. Tomographic reconstruction of vector fields , 1991, IEEE Trans. Signal Process..
[4] Guillaume Bal,et al. On the attenuated Radon transform with full and partial measurements , 2004 .
[5] S. G. Kazantsev,et al. Singular value decomposition for the 2D fan-beam Radon transform of tensor fields , 2004 .
[6] Gunnar Sparr,et al. Doppler tomography for vector fields , 1995 .
[7] Alexandru Tamasan,et al. Optical Tomography in Weakly Anisotropic Scattering Media , 2003 .
[8] Roman Novikov,et al. Une formule d'inversion pour la transformation d'un rayonnement X atténué , 2001 .
[9] Alexandru Tamasan,et al. An inverse boundary value problem in two-dimensional transport , 2002 .
[10] Kent Stråhlén. Exponential Vector Field Tomography , 1997, ICIAP.
[12] David Finch. The Attenuated X-Ray Transform: recent Developments , 2003 .
[13] Stephen J. Norton. Unique tomographic reconstruction of vector fields using boundary data , 1992, IEEE Trans. Image Process..
[14] Frank Natterer,et al. Inversion of the attenuated Radon transform , 2001 .
[15] Y. Katznelson. An Introduction to Harmonic Analysis: Interpolation of Linear Operators , 1968 .
[16] Jan-Olov Strömberg,et al. Novikov’s inversion formula for the attenuated Radon transform—A new approach , 2004 .