Assumed strain and hybrid destabilized ten-node C0 triangular shell elements

Abstract The conventional ten-node C0 triangular shell element is in general too stiff. In this paper, several less stiff formulations are proposed. To reduce the transverse shear stiffness, the assumed strain method is adopted. On the other hand, both assumed strain method and hybrid destabilization are employed for softening the membrane stiffness. The improvement is validated by popular numerical problems.

[1]  K. Y. Sze,et al.  A simple assumed strain method for enhancing the accuracy of the cubic triangular C 0 plate bending element , 1998 .

[2]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[3]  Theodore H. H. Pian,et al.  State-of-the-art development of hybrid/mixed finite element method , 1995 .

[4]  E. Hinton,et al.  A new nine node degenerated shell element with enhanced membrane and shear interpolation , 1986 .

[5]  T. Pian Derivation of element stiffness matrices by assumed stress distributions , 1964 .

[6]  K. Y. Sze,et al.  A novel approach for devising higher‐order hybrid elements , 1993 .

[7]  E. Oñate,et al.  New assumed strain triangles for non linear shell analysis , 1995 .

[8]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[9]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[10]  C. L. Chow,et al.  Elimination of spurious pressure and kinematic modes in biquadratic nine‐node plane element , 1995 .

[11]  Atef F. Saleeb,et al.  A mixed formulation of C0‐linear triangular plate/shell element—the role of edge shear constraints , 1988 .

[12]  P. Pinsky,et al.  An assumed covariant strain based 9‐node shell element , 1987 .

[13]  Klaus-Jürgen Bathe,et al.  Displacement and stress convergence of our MITC plate bending elements , 1990 .

[14]  Y. Başar,et al.  Finite-element analysis of hyperelastic thin shells with large strains , 1996 .

[15]  Y. C. Fung,et al.  Foundation of Solid Mechanics , 1966 .

[16]  W. T. Koiter A SPHERICAL SHELL UNDER POINT LOADS AT ITS POLES , 1962 .

[17]  K. Bathe Finite Element Procedures , 1995 .

[18]  J. Z. Zhu,et al.  The finite element method , 1977 .

[19]  K. Y. Sze,et al.  a Hybrid Stress Quadrilateral Shell Element with Full Rotational D.O.F.S , 1997 .

[20]  K. Y. Sze,et al.  An explicit hybrid-stabilized 9-node Lagrangian shell element , 1994 .

[21]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[22]  Carlos A. Felippa,et al.  The first ANDES elements: 9-dof plate bending triangles , 1991 .

[23]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9-node Lagrange shell element , 1989 .

[24]  B. Brank,et al.  On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells , 1995 .

[25]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .