Møller operators and Hadamard states for Dirac fields with MIT boundary conditions

The aim of this paper is to prove the existence of Hadamard states for Dirac fields coupled with MIT boundary conditions on any globally hyperbolic manifold with timelike boundary. This is achieved by introducing a geometric M{\o}ller operator which implements a unitary isomorphism between the spaces of $L^2$ -initial data of particular symmetric systems we call weakly-hyperbolic and which are coupled with admissible boundary conditions. In particular, we show that for Dirac fields with MIT boundary conditions, this isomorphism can be lifted to a $*$-isomorphism between the algebras of Dirac fields and that any Hadamard state can be pulled back along this $*$-isomorphism preserving the singular structure of its two-point distribution.

[1]  Valter Moretti,et al.  Paracausal deformations of Lorentzian metrics and Møller isomorphisms in algebraic quantum field theory , 2021, Selecta Mathematica.

[2]  Christian G'erard,et al.  Hadamard states for quantized Dirac fields on Lorentzian manifolds of bounded geometry , 2021, Reviews in Mathematical Physics.

[3]  Nadine Grosse,et al.  The Cauchy problem of the Lorentzian Dirac operator with APS boundary conditions , 2021, 2104.00585.

[4]  D. Vassiliev,et al.  Invariant subspaces of elliptic systems II: Spectral theory , 2021, Journal of Spectral Theory.

[5]  Claudio Dappiaggi,et al.  Fundamental solutions and Hadamard states for a scalar field with arbitrary boundary conditions on an asymptotically AdS spacetimes , 2021, Mathematical Physics, Analysis and Geometry.

[6]  J. Wunsch,et al.  Diffraction for the Dirac–Coulomb Propagator , 2020, Annales Henri Poincaré.

[7]  S. Murro,et al.  Intertwining operators for symmetric hyperbolic systems on globally hyperbolic manifolds , 2020, Annals of Global Analysis and Geometry.

[8]  N. Ginoux,et al.  On the Cauchy problem for Friedrichs systems on globally hyperbolic manifolds with timelike boundary , 2020, Advances in Differential Equations.

[9]  C. Dappiaggi,et al.  A generalization of the propagation of singularities theorem on asymptotically anti‐de Sitter spacetimes , 2020, Mathematische Nachrichten.

[10]  D. Vassiliev,et al.  Global Propagator for the Massless Dirac Operator and Spectral Asymptotics , 2020, Integral Equations and Operator Theory.

[11]  S. Murro,et al.  Intertwining operators for symmetric hyperbolic systems on globally hyperbolic manifolds , 2020, Annals of Global Analysis and Geometry.

[12]  Simone Fagioli,et al.  Opinion formation systems via deterministic particles approximation , 2020, Kinetic & Related Models.

[13]  C. Dappiaggi,et al.  Global wave parametrices on globally hyperbolic spacetimes , 2020, 2001.04164.

[14]  K. Fredenhagen,et al.  Algebraic Approach to Bose–Einstein Condensation in Relativistic Quantum Field Theory: Spontaneous Symmetry Breaking and the Goldstone Theorem , 2019, Annales Henri Poincaré.

[15]  C. Dappiaggi,et al.  On Maxwell’s Equations on Globally Hyperbolic Spacetimes with Timelike Boundary , 2019, 1908.09504.

[16]  F. Bambozzi,et al.  On the uniqueness of invariant states , 2019, Advances in Mathematics.

[17]  F. Finster,et al.  The fermionic signature operator in de Sitter spacetime , 2019, Journal of Mathematical Analysis and Applications.

[18]  M. Levitin,et al.  Geometric wave propagator on Riemannian manifolds , 2019, Communications in Analysis and Geometry.

[19]  C. G'erard Microlocal Analysis of Quantum Fields on Curved Spacetimes , 2019, 1901.10175.

[20]  Oran Gannot,et al.  PROPAGATION OF SINGULARITIES ON AdS SPACETIMES FOR GENERAL BOUNDARY CONDITIONS AND THE HOLOGRAPHIC HADAMARD CONDITION , 2018, Journal of the Institute of Mathematics of Jussieu.

[21]  J. Flores,et al.  Structure of globally hyperbolic spacetimes-with-timelike-boundary , 2018, 1808.04412.

[22]  N. Große,et al.  The Well-Posedness of the Cauchy Problem for the Dirac Operator on Globally Hyperbolic Manifolds with Timelike Boundary , 2018, Documenta Mathematica.

[23]  C. Dappiaggi,et al.  Fundamental solutions for the wave operator on static Lorentzian manifolds with timelike boundary , 2018, Letters in Mathematical Physics.

[24]  F. Bambozzi,et al.  Invariant States on Noncommutative Tori , 2018, International Mathematics Research Notices.

[25]  Simone Fagioli,et al.  Solutions to aggregation–diffusion equations with nonlinear mobility constructed via a deterministic particle approximation , 2018, Mathematical Models and Methods in Applied Sciences.

[26]  M. Di Francesco,et al.  Deterministic particle approximation for nonlocal transport equations with nonlinear mobility , 2018, Journal of Differential Equations.

[27]  M. Benini,et al.  Algebraic Quantum Field Theory on Spacetimes with Timelike Boundary , 2017, Annales Henri Poincaré.

[28]  C. Dappiaggi,et al.  Ground state for a massive scalar field in the BTZ spacetime with Robin boundary conditions , 2017, 1708.00271.

[29]  C. Dappiaggi,et al.  Non-existence of natural states for Abelian Chern–Simons theory , 2016, 1612.04080.

[30]  M. Wrochna The holographic Hadamard condition on asymptotically anti-de Sitter spacetimes , 2016, 1612.01203.

[31]  Thomas-Paul Hack,et al.  The Generalised Principle of Perturbative Agreement and the Thermal Mass , 2016, Annales Henri Poincaré.

[32]  C. Gérard,et al.  On the adiabatic limit of Hadamard states , 2016, 1609.03080.

[33]  S. Murro,et al.  A new class of Fermionic Projectors: Møller operators and mass oscillation properties , 2016, 1607.02909.

[34]  F. Finster,et al.  The fermionic signature operator and quantum states in Rindler space-time , 2016, 1606.03882.

[35]  F. Finster,et al.  An integral representation for the massive Dirac propagator in Kerr geometry in Eddington-Finkelstein-type coordinates , 2016, 1606.01509.

[36]  J. Zahn Generalized Wentzell Boundary Conditions and Quantum Field Theory , 2015, 1512.05512.

[37]  F. Finster,et al.  Self-Adjointness of the Dirac Hamiltonian for a Class of Non-Uniformly Elliptic Boundary Value Problems , 2015, 1512.00761.

[38]  C. Dappiaggi,et al.  Constructing Hadamard States via an Extended Møller Operator , 2015, 1506.09122.

[39]  F. Finster,et al.  The fermionic projector in a time-dependent external potential: Mass oscillation property and Hadamard states , 2015, 1501.05522.

[40]  Igor Khavkine,et al.  Algebraic QFT in Curved Spacetime and Quasifree Hadamard States: An Introduction , 2014, 1412.5945.

[41]  K. Fredenhagen,et al.  Quantum field theory on curved spacetimes: Axiomatic framework and examples , 2014, 1412.5125.

[42]  C. Dappiaggi,et al.  The Casimir Effect from the Point of View of Algebraic Quantum Field Theory , 2014, 1412.1409.

[43]  M. Benini,et al.  Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states , 2014, 1404.4551.

[44]  Christian Bär Green-Hyperbolic Operators on Globally Hyperbolic Spacetimes , 2013, 1310.0738.

[45]  R. Verch,et al.  The necessity of the Hadamard condition , 2013, 1307.5242.

[46]  K. Sanders,et al.  Electromagnetism, Local Covariance, the Aharonov–Bohm Effect and Gauss’ Law , 2012, 1211.6420.

[47]  Christian Baer,et al.  Classical and Quantum Fields on Lorentzian Manifolds , 2011, 1104.1158.

[48]  S. S. Gousheh,et al.  Fermionic Casimir energy in a three-dimensional box , 2010 .

[49]  C. Dappiaggi,et al.  Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime , 2009, 0907.1034.

[50]  C. Dappiaggi,et al.  The Extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor , 2009, 0904.0612.

[51]  Ko Sanders Communications in Mathematical Physics Equivalence of the ( Generalised ) Hadamard and Microlocal Spectrum Condition for ( Generalised ) Free Fields in Curved Spacetime , 2010 .

[52]  Christian Baer,et al.  Wave Equations on Lorentzian Manifolds and Quantization , 2007, 0806.1036.

[53]  M. Nardmann Pseudo-Riemannian metrics with prescribed scalar curvature , 2004, math/0409435.

[54]  A. Vasy Propagation of singularities for the wave equation on manifolds with corners , 2004, math/0405431.

[55]  R. Wald,et al.  Conservation of the Stress Tensor in Perturbative Interacting Quantum Field Theory in Curved Spacetimes , 2004, gr-qc/0404074.

[56]  P. Gauduchon,et al.  Generalized cylinders in semi-Riemannian and spin geometry , 2003, math/0303095.

[57]  R. Wald,et al.  Existence of Local Covariant Time Ordered Products of Quantum Fields in Curved Spacetime , 2001, gr-qc/0111108.

[58]  R. Verch,et al.  Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime , 2000, math-ph/0008029.

[59]  R. Verch,et al.  Passivity and Microlocal Spectrum Condition , 2000, math-ph/0002021.

[60]  R. Verch,et al.  A local-to-global singularity theorem for quantum field theory on curved space-time , 1996 .

[61]  Richard B. Melrose,et al.  The Atiyah-Patodi-Singer Index Theorem , 1993 .

[62]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[63]  R. Wald,et al.  Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon , 1991 .

[64]  R. Wald,et al.  Singularity structure of the two-point function in quantum field theory in curved spacetime, II , 1981 .

[65]  T. Goldman,et al.  Bag boundary conditions for confinement in the qq-bar relative coordinate , 1981 .

[66]  Mark Sweeny,et al.  Singularity structure of the two-point function in quantum field theory in curved spacetime , 1978 .

[67]  W. Pusz,et al.  Passive states and KMS states for general quantum systems , 1978 .

[68]  Richard B. Melrose,et al.  Singularities of boundary value problems. I , 1978 .

[69]  D. S. Betts Electromagnetism , 1977, Nature.

[70]  Michael Taylor,et al.  Reflection of singularities of solutions to systems of differential equations , 1975 .

[71]  R. Jaffe,et al.  Baryon Structure in the Bag Theory , 1974 .

[72]  V. Weisskopf,et al.  A New Extended Model of Hadrons , 1974 .

[73]  R. Phillips,et al.  Local boundary conditions for dissipative symmetric linear differential operators , 1960 .

[74]  Kurt Friedrichs,et al.  Symmetric positive linear differential equations , 1958 .

[75]  V. Ivrii Microlocal Analysis, Sharp Spectral Asymptotics and Applications I , 2019 .

[76]  Guillaume Idelon-Riton Scattering theory for the Dirac equation in Schwarzschild-Anti-de Sitter space-time , 2018 .

[77]  J. Yngvason,et al.  Advances in Algebraic Quantum Field Theory , 2015 .

[78]  J. Grant GLOBAL LORENTZIAN GEOMETRY , 2009 .

[79]  H. Araki On Quasifree States of CAR and Bogoliubov Automorphisms , 1970 .