Finite Element Computations of Kolmogorov-Petrovsky-Piskunov Front Speeds in Random Shear Flows in Cylinders

We study the Kolmogorov–Petrovsky–Piskunov minimal front speeds in spatially random shear flows in cylinders of various cross sections based on the variational principle and an associated elliptic eigenvalue problem. We compare a standard finite element method and a two-scale finite element method in random front speed computations. The two-scale method iterates solutions between coarse and fine meshes and reduces the cost of the eigenvalue computation to that of a boundary value problem while maintaining the accuracy. The two-scale method saves computing time and provides accurate enough solutions. In the case of square and elliptical cross sections, our simulation shows that larger aspect ratios of domain cross sections increase the average front speeds in agreement with an asymptotic theory.

[1]  Rhys,et al.  Front propagation rates in randomly stirred media. , 1995, Physical review letters.

[2]  Fang Liu,et al.  TWO-SCALE FINITE ELEMENT DISCRETIZATIONS FOR PARTIAL DIFFERENTIAL EQUATIONS , 2006 .

[3]  C.-S. Chien,et al.  An efficient algorithm for the Schrödinger-Poisson eigenvalue problem , 2007 .

[4]  Jack Xin,et al.  A variational principle based study of KPP minimal front speeds in random shears , 2005 .

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Henri Berestycki,et al.  Travelling fronts in cylinders , 1992 .

[7]  Jack Xin,et al.  A Variational Principle for KPP Front Speeds in Temporally Random Shear Flows , 2005 .

[8]  J. Xin,et al.  Min-max variational principle and front speeds in random shear flows , 2004, math/0501445.

[9]  C.-S. Chien,et al.  A Two-Grid Discretization Scheme for Semilinear Elliptic Eigenvalue Problems , 2005, SIAM J. Sci. Comput..

[10]  R. Adler The Geometry of Random Fields , 2009 .

[11]  Andrej Zlatos,et al.  Pulsating front speed-up and quenching of reaction by fast advection , 2007, 0704.1164.

[12]  P. Ronney Some open issues in premixed turbulent combustion , 1995 .

[13]  A. Stevens,et al.  Variational Principles for Propagation Speeds in Inhomogeneous Media , 2001, SIAM J. Appl. Math..

[14]  Ian H. Sloan Iterated Galerkin Method for Eigenvalue Problems , 1976 .

[15]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[16]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[17]  K. Kolman,et al.  A Two-Level Method for Nonsymmetric Eigenvalue Problems , 2005 .

[18]  J. Xin,et al.  Variational Principle Based Computation of KPP Average Front Speeds in Random Shear Flows , 2004 .

[19]  Adam M. Oberman,et al.  Bulk Burning Rate in¶Passive–Reactive Diffusion , 1999, math/9907132.

[20]  Jack Xin,et al.  Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows , 2009 .

[21]  J. Xin KPP Front Speeds in Random Shears and the Parabolic Anderson Problem , 2002 .

[22]  Andrew J. Majda,et al.  Flame fronts in a turbulent combustion model with fractal velocity fields , 1998 .

[23]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[24]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[25]  F. Chatelin The Spectral Approximation of Linear Operators with Applications to the Computation of Eigenelements of Differential and Integral Operators , 1981 .

[26]  F. Williams,et al.  Theory of premixed-flame propagation in large-scale turbulence , 1979, Journal of Fluid Mechanics.

[27]  Victor Yakhot,et al.  Propagation Velocity of Premixed Turbulent Flames , 1988 .

[28]  Peter Kuchment,et al.  Waves in Periodic and Random Media , 2003 .

[29]  N. Nadirashvili,et al.  Elliptic Eigenvalue Problems with Large Drift and Applications to Nonlinear Propagation Phenomena , 2005 .

[30]  Kerstein,et al.  Propagation rate of growing interfaces in stirred fluids. , 1992, Physical review letters.

[31]  F. Hamel Formules min-max pour les vitesses d'ondes progressives multidimensionnelles , 1999 .

[32]  J. Xin,et al.  Computing reactive front speeds in random flows by variational principle , 2008 .

[33]  Boualem Khouider,et al.  A Rigorous Asymptotic Perspective on the Large Scale Simulations of Turbulent Premixed Flames , 2007, Multiscale Model. Simul..

[34]  Peter R. Kramer,et al.  A Review of Some Monte Carlo Simulation Methods for Turbulent Systems , 2001, Monte Carlo Methods Appl..