Comparative expression profile of microRNAs in Anopheles anthropophagus midgut after blood-feeding and Plasmodium infection

[1]  L. Cator,et al.  Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential , 2015, Scientific Reports.

[2]  Xiaohong Wang,et al.  Anopheles Midgut FREP1 Mediates Plasmodium Invasion* , 2015, The Journal of Biological Chemistry.

[3]  D. Nikolaeva,et al.  Toward the development of effective transmission-blocking vaccines for malaria , 2015, Expert review of vaccines.

[4]  R. Bhatnagar,et al.  Dynamic expression of miRNAs across immature and adult stages of the malaria mosquito Anopheles stephensi , 2015, Parasites & Vectors.

[5]  G. Dimopoulos,et al.  MicroRNA-regulation of Anopheles gambiae immunity to Plasmodium falciparum infection and midgut microbiota. , 2015, Developmental and comparative immunology.

[6]  A. Crisanti,et al.  The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs , 2015, BMC Genomics.

[7]  T. Ye,et al.  Transcriptome-wide analysis of microRNA expression in the malaria mosquito Anopheles gambiae , 2014, BMC Genomics.

[8]  R. Bhatnagar,et al.  Blood Feeding and Plasmodium Infection Alters the miRNome of Anopheles stephensi , 2014, PloS one.

[9]  K. Etebari,et al.  Wolbachia Infection Modifies the Profile, Shuttling and Structure of MicroRNAs in a Mosquito Cell Line , 2014, PloS one.

[10]  S. Liang,et al.  Identification and characterization of the expression profile of microRNAs in Anopheles anthropophagus , 2014, Parasites & Vectors.

[11]  G. Ebel,et al.  MicroRNA levels are modulated in Aedes aegypti after exposure to Dengue‐2 , 2014, Insect molecular biology.

[12]  R. Bhatnagar,et al.  Next Generation Sequencing Reveals Regulation of Distinct Aedes microRNAs during Chikungunya Virus Development , 2014, PLoS neglected tropical diseases.

[13]  S. Asgari,et al.  Wolbachia-Induced aae-miR-12 miRNA Negatively Regulates the Expression of MCT1 and MCM6 Genes in Wolbachia-Infected Mosquito Cell Line , 2012, PloS one.

[14]  C. Blair Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. , 2011, Future microbiology.

[15]  A. Raikhel,et al.  microRNA miR-275 is indispensable for blood digestion and egg development in the mosquito Aedes aegypti , 2010, Proceedings of the National Academy of Sciences.

[16]  Caroline W. Kabaria,et al.  The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis , 2010, Parasites & Vectors.

[17]  G. Dimopoulos,et al.  Mosquito immune defenses against Plasmodium infection. , 2010, Developmental and comparative immunology.

[18]  Z. Tu,et al.  Direct sequencing and expression analysis of a large number of miRNAs in Aedes aegypti and a multi-species survey of novel mosquito miRNAs , 2009, BMC Genomics.

[19]  Jian-ping Liu,et al.  Differentially expressed genes between female and male adult Anopheles anthropophagus , 2009, Parasitology Research.

[20]  Bing Su,et al.  Molecular evolution of a primate-specific microRNA family. , 2008, Molecular biology and evolution.

[21]  A. Hüttenhofer,et al.  Anopheles gambiae miRNAs as actors of defence reaction against Plasmodium invasion , 2007, Nucleic acids research.

[22]  E. Levashina,et al.  Mosquito midguts and malaria: cell biology, compartmentalization and immunology , 2006, Parasite immunology.

[23]  E. Miska,et al.  How microRNAs control cell division, differentiation and death. , 2005, Current opinion in genetics & development.

[24]  S. Meister,et al.  The Plasmodium parasite--a 'new' challenge for insect innate immunity. , 2004, International journal for parasitology.

[25]  R. Sinden,et al.  Mosquito--malaria interactions: a reappraisal of the concepts of susceptibility and refractoriness. , 2004, Insect biochemistry and molecular biology.

[26]  H. Ferguson,et al.  Mosquito appetite for blood is stimulated by Plasmodium chabaudi infections in themselves and their vertebrate hosts , 2004, Malaria Journal.

[27]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[28]  T. Scott,et al.  Why Do Female Aedes aegypti (Diptera: Culicidae) Feed Preferentially and Frequently on Human Blood? , 2001, Journal of medical entomology.

[29]  T. Scott,et al.  Blood-feeding behavior of dengue-2 virus-infected Aedes aegypti. , 1995, The American journal of tropical medicine and hygiene.

[30]  S. Cohen,et al.  microRNA functions. , 2007, Annual review of cell and developmental biology.

[31]  B. Cullen,et al.  Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus , 2010, BMC Genomics.